实验一 白噪声测试

上传人:壹****1 文档编号:522152589 上传时间:2024-03-27 格式:DOC 页数:23 大小:1.31MB
返回 下载 相关 举报
实验一 白噪声测试_第1页
第1页 / 共23页
实验一 白噪声测试_第2页
第2页 / 共23页
实验一 白噪声测试_第3页
第3页 / 共23页
实验一 白噪声测试_第4页
第4页 / 共23页
实验一 白噪声测试_第5页
第5页 / 共23页
点击查看更多>>
资源描述

《实验一 白噪声测试》由会员分享,可在线阅读,更多相关《实验一 白噪声测试(23页珍藏版)》请在金锄头文库上搜索。

1、白噪声测试一、 实验目的 了解白噪声信号的特性,包括均值(数学期望)、均方值、方差、相关函数、概率密度、频谱及功率谱密度等。 掌握白噪声信号的分析方法。二、 实验原理所谓白噪声是指它的概率统计特性服从某种分布而它的功率谱密度又是均匀的。确切的说,白噪声只是一种理想化的模型,因为实际的噪声功率谱密度不可能具有无限宽的带宽,否则它的平均功率将是无限大,是物理上不可实现的。然而白噪声在数学处理上比较方便,所以它在通信及电子工程系统的分析中有十分重要的作用。一般地说,只要噪声的功率谱密度的宽度远大于它所作用的系统的带宽,并且在系统的带内,它的功率谱密度基本上是常数,就可以作为白噪声处理了。白噪声的功率

2、谱密度为: 其中为单边功率谱密度。白噪声的自相关函数为:白噪声的自相关函数是位于=0处、强度为的冲击函数。这表明白噪声在任何两个不同的瞬间的取值是不相关的。同时也意味着白噪声能随时间无限快的变化,因为它的带宽是无限宽的。下面我们给出几种分布的白噪声。随机过程的几种分布前人已证明,要产生一个服从某种分布的随机数,可以先求出其分布函数的反函数的解析式,再将一个在0,1区间内的均匀分布的随机数的值代入其中,就可以计算出服从某种分布的随机数。下面我们就求解这些随机数。0,1区间均匀分布随机信号的产生:采用混合同余法产生0,1区间的均匀分布随机数。混合同余法产生随机数的递推公式为: n=0,1,2 n=

3、1,2,3由上式的出如下实用算法: 其中: ,其中k为计算几种数字尾部的字长 ,t为任意选定的正整数 ,为任意非负整数,为奇数Matlab语言中的rand()函数是服从0,1均匀分布的,所以在以后的实验中如果用到均匀分布的随机数,我们统一使用rand()函数。正态分布(高斯分布)随机信号的产生:高斯分布的密度函数为: 采用变换法产生正态分布随机数,若、示0,1均匀分布随机数,则有正态分布随机数: 指数分布随机信号的产生:指数分布的密度函数为: 当x0时,当x0时 f(x)=0,其中0它的反函数(指数分布随机数)为: 其中r为0,1区间均匀分布的随机数。三、 实验内容与结果1.产生五种概率分布的

4、信号Matlab程序:%生成各种分布的随机数x1=unifrnd(-1,1,1,1024);%生成长度为1024的均匀分布x2=normrnd(0,1,1,1024);%生成长度为1024的正态分布x3=exprnd(1,1,1024);%生成长度为1024的指数分布均值为零x4=raylrnd(1,1,1024);%生成长度为1024的瑞利分布x5=chi2rnd(1,1,1024);%生成长度为1024的卡方分布%时域特性曲线:figure;subplot(3,2,1),plot(1:1024,x1);grid on;title(均匀分布);xlabel(时间(t));ylabel(幅度)

5、;axis(0 1024 -2 2 );subplot(3,2,2),plot(1:1024,x2);grid on;title(正态分布);xlabel(时间(t));ylabel(幅度);axis(0 1024 -2 2 );subplot(3,2,3),plot(1:1024,x3);grid on;title(指数分布);xlabel(时间(t));ylabel(幅度);axis(0 1024 -1 5 );subplot(3,2,4),plot(1:1024,x4);grid on;title(瑞利分布);xlabel(时间(t));ylabel(幅度);axis(0 1024 -1

6、 4 );subplot(3,2,5),plot(1:1024,x5);grid on;title(卡方分布);xlabel(时间(t));ylabel(幅度);axis(0 1024 -1 5 );2.均值:均值Ex(t)表示集合平均值或数学期望值。基于随机过程的各态历经性,可用时间间隔t内的幅值平均值表示:均值表达了信号变化的中心趋势,或称之为直流分量。在MATLAB中,可以用mean()函数来计算。%求各种分布的均值figure;m1=mean(x1);m2=mean(x2);m3=mean(x3);m4=mean(x4);m5=mean(x5);subplot(3,2,1),plot(

7、1:1024,m1);title(均匀分布均值);xlabel(时间(t));ylabel(幅度);axis(0 1024 -2 2);subplot(3,2,2),plot(1:1024,m2);title(高斯分布均值);xlabel(时间(t));ylabel(幅度);axis(0 1024 -2 2);subplot(3,2,3),plot(1:1024,m3);title(指数分布均值);xlabel(时间(t));ylabel(幅度);axis(0 1024 -2 2);subplot(3,2,4),plot(1:1024,m4);title(瑞利分布均值);xlabel(时间(t

8、));ylabel(幅度);axis(0 1024 -2 2);subplot(3,2,5),plot(1:1024,m5);title(卡方分布均值);xlabel(时间(t));ylabel(幅度);axis(0 1024 -2 2);3.方差:随机过程的方差函数描述了随机过程所有样本函数在t时刻的函数值相对于其数学期望的偏离程度。定义:其中(t)是随机过程的标准差。当随即过程表征的是接收机输出端的噪声电压时,2(t)表示小号在单位电阻上的瞬时交流功率统计平均值,而(t)表示噪声电压相对于电压统计平均值的交流分量。在MATLAB中,可以用std()函数计算出标准差(t),再平方就可以得到方

9、差。%求各种分布的方差figure;v1=var(x1);v2=var(x2);v3=var(x3);v4=var(x4);v5=var(x5);subplot(3,2,1),plot(1:1024,v1);grid on;title(均匀分布方差);xlabel(时间(t));ylabel(幅度);subplot(3,2,2),plot(1:1024,v2);grid on;title(高斯分布方差);xlabel(时间(t));ylabel(幅度);subplot(3,2,3),plot(1:1024,v3);grid on;title(指数分布方差);xlabel(时间(t));ylab

10、el(幅度);subplot(3,2,4),plot(1:1024,v4);grid on;title(瑞利分布方差);xlabel(时间(t));ylabel(幅度);subplot(3,2,5),plot(1:1024,v5);grid on;title(卡方分布方差);xlabel(时间(t));ylabel(幅度);4.自相关:信号的相关性是指客观事物变化量之间的相依关系。对于平稳随机过程x(t)和y(t)在两个不同时刻t和t+的起伏值的关联程度,可以用相关函数表示。在离散情况下,信号x(n)和y(n)的相关函数定义为:随机信号的自相关函数表示波形自身不同时刻的相似程度。与波形分析、频

11、谱分析相比,它具有能够在强噪声干扰情况下准确地识别信号周期的特点。%求各种分布的自相关函数figure;title(自相关函数图);x_c1,lags=xcorr(x1,200,unbiased);x_c2,lags=xcorr(x2,200,unbiased);x_c3,lags=xcorr(x3,200,unbiased);x_c4,lags=xcorr(x4,200,unbiased);x_c5,lags=xcorr(x5,200,unbiased);subplot(3,2,1),plot(lags,x_c1);grid on;title(均匀分布 自相关);subplot(3,2,2)

12、,plot(lags,x_c2);grid on;title(正态分布 自相关);subplot(3,2,3),plot(lags,x_c3);grid on;title(指数分布 自相关);subplot(3,2,4),plot(lags,x_c4);grid on;title(瑞利分布 自相关);subplot(3,2,5),plot(lags,x_c5);grid on;title(卡方分布 自相关);5.概率密度函数:一维分布函数为:若Fx(x1;t1)对x1的一阶偏导存在,则一维概率密度为:在MATLAB中,可以用ksdensity()函数来计算一维概率密度。%求各种分布的概率密度函

13、数y1=unifpdf(x1,-1,1);y2=normpdf(x2,0,1);y3=exppdf(x3,1);y4=raylpdf(x4,1);y5=chi2pdf(x5,1);%各种分布的概率密度估计figure;k1,n1=ksdensity(x1); k2,n2=ksdensity(x2);k3,n3=ksdensity(x3);k4,n4=ksdensity(x4);k5,n5=ksdensity(x5);subplot(3,2,1),plot(n1,k1);grid on;title(均匀分布 概率密度);xlabel(时间);ylabel(幅度)subplot(3,2,2),pl

14、ot(n2,k2);grid on;title(正态分布 概率密度);xlabel(时间);ylabel(幅度)subplot(3,2,3),plot(n3,k3);grid on;title(指数分布 概率密度);xlabel(时间);ylabel(幅度)subplot(3,2,4),plot(n4,k4);grid on;title(瑞利分布 概率密度);xlabel(时间);ylabel(幅度)subplot(3,2,5),plot(n5,k5);grid on;title(卡方分布 概率密度);xlabel(时间);ylabel(幅度)6.频谱:信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号x(f),从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为:在MATLAB中,对信号进行快速傅立叶变换fft()就可以得到频谱函数。%幅频特性曲线x1=unifrnd(-1,1,1,1024);%生成长度为1024的均匀分布x2=normrnd(0,1

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 医学/心理学 > 心理学书籍

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号