《同济大学第六版高等数学课后答案详解全集.doc》由会员分享,可在线阅读,更多相关《同济大学第六版高等数学课后答案详解全集.doc(131页珍藏版)》请在金锄头文库上搜索。
1、 同济六版高等数学课后答案全集第一章习题1-1 1. 设A=(-, -5)(5, +), B=-10, 3), 写出AB, AB, AB及A(AB)的表达式. 解 AB=(-, 3)(5, +), AB=-10, -5), AB=(-, -10)(5, +), A(AB)=-10, -5). 2. 设A、B是任意两个集合, 证明对偶律: (AB)C=AC BC . 证明 因为 x(AB)CxAB xA或xB xAC或xBC xAC BC, 所以 (AB)C=AC BC . 3. 设映射f : X Y, AX, BX . 证明 (1)f(AB)=f(A)f(B); (2)f(AB)f(A)f(B
2、). 证明 因为 yf(AB)$xAB, 使f(x)=y (因为xA或xB) yf(A)或yf(B) yf(A)f(B), 所以 f(AB)=f(A)f(B). (2)因为 yf(AB)$xAB, 使f(x)=y(因为xA且xB) yf(A)且yf(B) y f(A)f(B),所以 f(AB)f(A)f(B). 4. 设映射f : XY, 若存在一个映射g: YX, 使, , 其中IX、IY分别是X、Y上的恒等映射, 即对于每一个xX, 有IX x=x; 对于每一个yY, 有IY y=y. 证明: f是双射, 且g是f的逆映射: g=f -1. 证明 因为对于任意的yY, 有x=g(y)X,
3、且f(x)=fg(y)=Iy y=y, 即Y中任意元素都是X中某元素的像, 所以f为X到Y的满射. 又因为对于任意的x1x2, 必有f(x1)f(x2), 否则若f(x1)=f(x2)g f(x1)=gf(x2) x1=x2. 因此f既是单射, 又是满射, 即f是双射. 对于映射g: YX, 因为对每个yY, 有g(y)=xX, 且满足f(x)=fg(y)=Iy y=y, 按逆映射的定义, g是f的逆映射. 5. 设映射f : XY, AX . 证明: (1)f -1(f(A)A; (2)当f是单射时, 有f -1(f(A)=A . 证明 (1)因为xA f(x)=yf(A) f -1(y)=
4、xf -1(f(A), 所以 f -1(f(A)A. (2)由(1)知f -1(f(A)A. 另一方面, 对于任意的xf -1(f(A)存在yf(A), 使f -1(y)=xf(x)=y . 因为yf(A)且f是单射, 所以xA. 这就证明了f -1(f(A)A. 因此f -1(f(A)=A . 6. 求下列函数的自然定义域: (1); 解 由3x+20得. 函数的定义域为. (2); 解 由1-x20得x1. 函数的定义域为(-, -1)(-1, 1)(1, +). (3); 解 由x0且1-x20得函数的定义域D=-1, 0)(0, 1. (4); 解 由4-x20得 |x|0得函数的定义
5、域D=(-1, +). (10). 解 由x0得函数的定义域D=(-, 0)(0, +). 7. 下列各题中, 函数f(x)和g(x)是否相同?为什么? (1)f(x)=lg x2, g(x)=2lg x; (2) f(x)=x, g(x)=; (3),. (4)f(x)=1, g(x)=sec2x-tan2x . 解 (1)不同. 因为定义域不同. (2)不同. 因为对应法则不同, x0, 1-x20. 因为当x1x2时, , 所以函数在区间(-, 1)内是单调增加的. (2)对于任意的x1, x2(0, +), 当x1x2时, 有 , 所以函数y=x+ln x在区间(0, +)内是单调增加
6、的. 10. 设 f(x)为定义在(-l, l)内的奇函数, 若f(x)在(0, l)内单调增加, 证明f(x)在(-l, 0)内也单调增加. 证明 对于x1, x2(-l, 0)且x1-x2. 因为f(x)在(0, l)内单调增加且为奇函数, 所以f(-x2)f(-x1), -f(x2)f(x1), 这就证明了对于x1, x2(-l, 0), 有f(x1) f(x2), 所以f(x)在(-l, 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l, l)上的, 证明: (1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数; (2)两个偶函数的乘积是偶函数, 两个奇函数的乘
7、积是偶函数, 偶函数与奇函数的乘积是奇函数. 证明 (1)设F(x)=f(x)+g(x). 如果f(x)和g(x)都是偶函数, 则 F(-x)=f(-x)+g(-x)=f(x)+g(x)=F(x), 所以F(x)为偶函数, 即两个偶函数的和是偶函数. 如果f(x)和g(x)都是奇函数, 则 F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-F(x), 所以F(x)为奇函数, 即两个奇函数的和是奇函数. (2)设F(x)=f(x)g(x). 如果f(x)和g(x)都是偶函数, 则 F(-x)=f(-x)g(-x)=f(x)g(x)=F(x), 所以F(x)为偶函数, 即两个偶函数的积是
8、偶函数. 如果f(x)和g(x)都是奇函数, 则 F(-x)=f(-x)g(-x)=-f(x)-g(x)=f(x)g(x)=F(x), 所以F(x)为偶函数, 即两个奇函数的积是偶函数. 如果f(x)是偶函数, 而g(x)是奇函数, 则 F(-x)=f(-x)g(-x)=f(x)-g(x)=-f(x)g(x)=-F(x), 所以F(x)为奇函数, 即偶函数与奇函数的积是奇函数. 12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数? (1)y=x2(1-x2); (2)y=3x2-x3; (3); (4)y=x(x-1)(x+1); (5)y=sin x-cos x+1;
9、 (6). 解 (1)因为f(-x)=(-x)21-(-x)2=x2(1-x2)=f(x), 所以f(x)是偶函数. (2)由f(-x)=3(-x)2-(-x)3=3x2+x3可见f(x)既非奇函数又非偶函数. (3)因为, 所以f(x)是偶函数. (4)因为f(-x)=(-x)(-x-1)(-x+1)=-x(x+1)(x-1)=-f(x), 所以f(x)是奇函数. (5)由f(-x)=sin(-x)-cos(-x)+1=-sin x-cos x+1可见f(x)既非奇函数又非偶函数. (6)因为, 所以f(x)是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)
10、y=cos(x-2); 解 是周期函数, 周期为l=2p. (2)y=cos 4x; 解 是周期函数, 周期为. (3)y=1+sin px; 解 是周期函数, 周期为l=2. (4)y=xcos x; 解 不是周期函数. (5)y=sin2x. 解 是周期函数, 周期为l=p. 14. 求下列函数的反函数: (1); 解 由得x=y3-1, 所以的反函数为y=x3-1. (2); 解 由得, 所以的反函数为. (3)(ad-bc0); 解 由得, 所以的反函数为. (4) y=2sin3x; 解 由y=2sin 3x得, 所以y=2sin3x的反函数为. (5) y=1+ln(x+2); 解
11、 由y=1+ln(x+2)得x=ey-1-2, 所以y=1+ln(x+2)的反函数为y=ex-1-2. (6). 解 由得, 所以的反函数为. 15. 设函数f(x)在数集X上有定义, 试证: 函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界. 证明 先证必要性. 设函数f(x)在X上有界, 则存在正数M, 使|f(x)|M, 即-Mf(x)M. 这就证明了f(x)在X上有下界-M和上界M. 再证充分性. 设函数f(x)在X上有下界K1和上界K2, 即K1f(x) K2 . 取M=max|K1|, |K2|, 则 -M K1f(x) K2M , 即 |f(x)|M. 这就证明了f(x)在X上有界. 16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x1和x2的函数值: (1) y=u2, u=sin x, , ; 解 y=sin2x, ,. (2) y=sin u, u=2x, ,; 解 y=sin2x, ,. (3), u=1+x2, x1=1, x