《电动自行车用燃料电池混合动力系统设计》由会员分享,可在线阅读,更多相关《电动自行车用燃料电池混合动力系统设计(79页珍藏版)》请在金锄头文库上搜索。
1、研 究 生 学 位 论 文电动自行车用燃料电池混合动力系统设计DESIGN OF FUEL CELL HYBRID POWER SYSTEM FOR ELECTRIC BICYCLE摘 要当今世界能源匮乏日益严重,新能源的应用作为一种有效的解决途径,已逐渐成为各国研究的热点。电动自行车是当今社会重要的交通工具,不仅方便百姓出行,而且可缓解城市交通拥堵。如果将燃料电池作为电动自行车的主动力源,锂电池作为辅助动力源,使其成为高效率、低排放的混合动力系统,则不失为一种解决环境污染和城市噪音问题的可行方案。本文重新设计电动自行车的动力和控制系统,将原由铅酸蓄电池单独提供动力的电动自行车改装为由燃料电池
2、和锂电池共同提供动力的混合动力电动自行车。根据燃料电池、锂电池和电动自行车的各自特性,设计适用于电动自行车的燃料电池混合动力系统。在Simulink仿真平台上,搭建峰值电流控制模式的两相交错并联Buck变换器电路模型和燃料电池/锂电池混合动力系统模型,同时进行了仿真实验。仿真结果表明:各子系统及混合动力系统模型搭建正确,混合动力系统能量可控。基于燃料电池输出特性,提出一种以燃料电池输出电压钳位控制为基础的燃料电池混合动力能量管理策略。在该策略下,燃料电池和锂电池总工作于其安全运行区域,且燃料电池输出功率波动相对较小。相比于传统的直接功率控制的能量管理策略,当燃料电池外部环境发生改变或处于亚健康
3、状态时,该策略可有效保护燃料电池,提高能源利用效率,延长燃料电池使用寿命。同时该策略可对锂电池充电进行有效管理,保证锂电池的充电安全,延长锂电池的使用寿命。为了验证该燃料电池混合动力系统能量管理策略的有效性,研制了一套电动自行车用燃料电池混合动力系统。同时,搭建混合动力系统测试平台。通过实验数据,测试并验证了能量管理策略的有效性和可靠性。最后,实验测试表明:本文所设计的燃料电池混合动力系统可以为电动自行车提供充足动力,并且动态响应快。除此之外,两动力源的功率分配合理。关键词:燃料电池;电动自行车;混合动力系统;能量管理策略AbstractNowadays, as a result of ene
4、rgy shortage, the research of new energy has become a hotspot of the world. As an important way of transportation in todays society, electric bikes not only facilitate us to go out, but also can ease the urban traffic congestion. An electric bike hybrid power system with the fuel cell as the main en
5、ergy and the lithium bettery as the auxiliary energy has the benefits of high efficiency and low-emission and is an alternative to solve the environmental pollution and urban noise problems.This thesis converts the original electric bike power system of single lead-acid battery to hybrid power syste
6、m of fuel cell and lithium battery by redesigning the power and control system of the electric bike. According to the dynamic performance of the fuel cell, lithium battery and electric bike, the fuel cell hybrid power system for electric bike has been designed.Based on Simulink, a two phase interlea
7、ved buck converter circuit model controlled by peak-current and a fuel cell/ lithium battery hybrid power system model have been built. And a simulation experiment has been done. The simulation result shows that the models of each subsystem and the hybrid power system are correct and the energy of h
8、ybrid power system can be controlled.Based on the output characteristics of fuel cell, a fuel cell hybrid power system energy management strategy based on clamping control of fuel cell output voltage is proposed. With this strategy, the fuel cell and the lithium battery work in safe operational regi
9、on, and the fluctuation of fuel cell output power is relatively small. Compared with the traditional energy management strategy of direct power control, this strategy can effectively protect the fuel cell, improve energy utilization efficiency and prolong the lifetime of fuel cell when the external
10、environment changes or the fuel cell is in subhealth state. Simultaneously, this management strategy can effectively control the charging of lithium battery, ensure the safety and prolong the lifetime of lithium battery.In order to verify the effectiveness of the fuel cell hybrid power system energy
11、 management strategy, a fuel cell hybrid power system for electric bikes has been developed. And a test platform for hybrid power system has been constructed. The effectiveness and reliability of the energy management strategy has been tested and verified by the experiment data. The experiment shows
12、 that the fuel cell hybrid power system designed in this thesis can provide sufficient power for the electric bike and has a fast transient response. Other than that, it is reasonable to the power allocation of the two sources.Key words: Fuel Cell; Electric Bike; Hybrid Power System; Energy Manageme
13、nt Strategy目 录第1章 绪论11.1 研究意义11.2 国内外研究现状31.2.1 燃料电池电动自行车31.2.2 燃料电池用级联DC/DC变换器41.2.3 燃料电池混合动力系统能量管理技术41.3 本文主要研究内容5第2章 燃料电池混合动力系统简介72.1 质子交换膜燃料电池72.2 锂电池82.3 燃料电池混合动力系统92.3.1 燃料电池混合动力系统拓扑结构92.3.2 燃料电池混合动力系统控制策略102.4 本章小结11第3章 燃料电池混合动力系统仿真123.1 燃料电池混合动力系统简化123.2 燃料电池混合动力系统建模133.2.1 燃料电池与锂电池模型143.2.2
14、 DC/DC变换器建模143.2.3 能量管理系统建模173.3 仿真验证和结果分析193.3.1 系统参数设置193.3.2 仿真验证及结果分析213.4 本章小结25第4章 电动自行车用燃料电池混合动力系统硬件设计264.1 燃料电池混合动力电动自行车总体结构及模块介绍264.2 燃料电池输出特性分析294.3 硬件实现原理304.3.1 DC/DC变换器输出功率控制314.3.2 DC/DC变换器输出电压控制314.3.3 燃料电池输出电压钳位控制334.3.4 锂电池充电电流管理354.4 混合动力系统能量管理策略原理及控制流程354.4.1 燃料电池混合动力系统能量管理策略原理364
15、.4.2 燃料电池混合动力系统能量管理策略控制流程374.5硬件设计及编程384.5.1 DC/DC变换器384.5.2 燃料电池输出电压钳位模块434.5.3 锂电池充电电流检测电路454.5.4 STM32控制器及编程464.5.5 弱电供电单元484.6 电动自行车用燃料电池混合动力系统硬件设备图494.7 本章小结50第5章 电动自行车用燃料电池混合动力系统及样车测试515.1混合动力系统实验测试平台搭建515.2 DC/DC变换器效率测试535.3 电动自行车行驶工况测试535.4 混合动力系统实验测试及结果分析555.4.1 第一组实验测试555.4.2 第二组实验测试585.4.3 第三组实验测试615.4.4 系统测试总结645.5 燃料电池混合动力电动自行车样车测试655.6 本章小结66结 论67致 谢69参考文献70攻读硕士学位期间发表的论文及科研成果74第1章 绪论1.1 研究意义能源是人类赖以生存和发展的物质基础,能源的研究和利用对现代社会的发展起着至关重要的作用1, 2。近年来,随着世界人口数量的剧增和经济的快速发展,能源消耗日益增大。世界范围内的能源短缺和环境污染问题日益严重,对经济的可持续发展带来严重的影响。太