《川大电工电子综合实践报告.doc》由会员分享,可在线阅读,更多相关《川大电工电子综合实践报告.doc(36页珍藏版)》请在金锄头文库上搜索。
1、四川大学网络教育学院 电工电子综合实践 校外学习中心: 贵 阳 学 院 学 生 姓 名: 吴 卫 专 业: 电气工程及其自动化 层 次: 专 升 本 年 级: 2012年春 学 号: DH1121Y1002 实 验 时 间: 2014年1月10 实验题目1、 L、C元件上电流电压的相位关系。2、 电路功率因素的提高。3、 虚拟一阶RC电路。4、 用数字电桥测交流参数。5、 差动放大电路。6、 负反馈电路。7、 算术运算电路。8、 整流、滤波和稳压电路。9、 编码器和译码器。10、 数据选择器。11、 触发器。12、 计数器。实验目的1、 在正弦电压激励下研究L、C元件上电流,电压的大小和它们的
2、相位关系,以及输入信号的频率对它们的影响,学习示波器、函数发生器以及数字相位仪的使用。2、 明确交流电路中电流、电压和功率之间的关系,了解提高感性交流电路功率因数的方法及电路现象,学习功率表的使用方式,了解日光灯工作原理及线路连接。3、 在Electronics workbench Multisim电子电路仿真软件中,对一阶电路输入方波信号,用示波器测量其输入,输出之间的波形,以验证RC电路的充放电原理,并熟悉示波器的使用。4、 用TH2080型LCR数字交流电桥测量RLC的各种参数,了解电阻、电容、电感的特性。5、 加深对差动放大电路工作原理的理解,学习差动放大电路静态工作点的测量方法。解差
3、动放大电路零漂产生的原因及抑制零漂的方法。学习差动放大电路差模、共模放大倍数和共模抑制比的测量方法。6、 加深对负反馈放大电路放大特性的理解。学习负反馈放大电路静态工作点的测试及调整方法。研究电压串联负反馈电路、电流负反馈偏置电路、电压负反馈偏置电路的反馈作用的实现过程,学习判断反馈电路的组态。观察输出电压波形,测定电路的电压放大倍数。7、 了解集成运放开环放大倍数和最大输出电压的测试方法,掌握比例运算、加法运算、减法运算、积分运算电路的调整,微分运算电路的连接与测试。了解集成运算放大器非线性应用的特点。8、 了解桥式整流电路的原理,以及输入、输出电压间的数量关系。认识滤波器的作用,理解变压器
4、参数的选择方法。了解串联稳压电路和并联稳压电路的工作原理。了解保护电路的限流保护作用和工作原理。了解集成稳压块的性能及其测试方法。9、 掌握二进制编码器的逻辑功能及编码方法。掌握译码器的逻辑功能,了解常用集成译码器件的使用方法。掌握译码器、编码器的工作原理和特点。熟悉常用译码器、编码器的逻辑功能及典型应用。10、 掌握数据选择器基本电路的构成及电路原理。学习并掌握数据选择器逻辑功能及其测试方法。掌握应用数据选择器组成其它逻辑电路的方法。11、 掌握触发器逻辑功能和测试方法。测试与非门构成的RS触发器的逻辑功能。测试JK触发器的逻辑功能。测试D触发器的逻辑功能。12、了解中规模集成计数器74LS
5、90,74LS161的功能,学习其使用方法。掌握将十进制计数器变换成N进制计数器的方法。了解同步,异步计数器的分频功能,学会调整同步,异步计数器的分频数。仪器仪表目录1、 交流电流表、交流电压表、数字相位计。2、单相调压器、交流电压表、电流表、单、三相功率表、十进电容器及荧光灯元件。3、脉冲信号发生器、虚拟示波器、动态电路实验板。4、FB2020型电桥综合实验平台、待测元件盒、交流检流计。5、交流毫伏表、示波器(自备)、数字直流电压表、晶体三极管。6、模拟实验箱,函数信号发生器,双踪示波器,交流伏安表,数字万用表。7、示波器、数字万用表。8、MaxplusII,FPGA实验箱。9、数字逻辑电路
6、实验箱、数字逻辑电路实验箱扩展板、数字万用表、芯片。10、计算机、ElectronicsWorkbenchMultisim2001电子线路仿真软件。11、四2输入正与非门74LS00、双D触发器74LS74。12、适配器、2JK触发器、LED显示器、四位计数器。实验报告一 L、C元件上电流电压的相位关系一、实验线路、实验原理和操作步骤 操作步骤:1、调节ZH-12实验台上的交流电源,使其输出交流电源电压值为220V。2、按电路图接线,先自行检查接线是否正确,并经教师检查无误后通电3、用示波器观察电感两端电压uL和电阻两端uR的波形,由于电阻上电压与电流同相位,因此从观察相位的角度出发,电阻上电
7、压的波形与电流的波形是相同的,而在数值上要除以“R”。仔细调节示波器,观察屏幕上显示的波形,并将结果记录操作步骤:1、调节ZH-12实验台上的交流电源,使其输出交流电源电压值为24V。2、按图电路图接线,先自行检查接线是否正确,并经教师检查无误后通电。3、用示波器的观察电容两端电压uC和电阻两端电压uR的波形,(原理同上)。仔细调节示波器,观察屏幕上显示的波形二、实验结果:1、在电感电路中,电感元件电流强度跟电压成正比,即IU.用 1/(XL)作为比例恒量,写成等式,就得到I=U/(XL)这就是纯电感电路中欧姆定律的表达式。电压超前电路90。分析:当交流电通过线圈时,在线圈中产生感应电动势。根
8、据电磁感应定律,感应电动势为(负号说明自感电动势的实际方向总是阻碍电流的变化)。当电感两端有自感电动势,则在电感两端必有电压,且电压u与自感电动势e相平衡。在电动势、电压、电流三者参考方向一致的情况下,则设图所示的电感中,有正弦电流通过,则电感两端电压为:波形与相量图如下:2、在交流电容电路中对电容器来说,其两端极板上电荷随时间的变化率,就是流过连接于电容导线中的电流,而极板上储存的电荷由公式q=Cu决定,于是就有:也可写成:设:电容器两端电压由上式可知:,即 实验和理论均可证明,电容器的电容C越大,交流电频率越高,则越小,也就是对电流的阻碍作用越小,电容对电流的“阻力”称做容抗,用Xc代表。
9、 波形与相量图如下:结论:电压与电流的关系为:实验报告二 电路功率因素的提高 一、实验原理: 供电系统由电源通过输电线路向负载供电。负载通常有电阻负载,也有电感性负载。由于电感性负载有较大的感抗,因而功率较低。 若电源向负载传送的功率,当功率P和供电电压U一定时,功率因数越低,线路电流I就越大,从而增加了线路电压降和线路功率损耗,若线路总电阻为R,则线路电压降和线路功率损耗分别为;负载电感进行能量交换,电源向负载提供有功功率的能力必然下降,从而降低了电源容量的利用率。因此,从提高供电系统的经济效益和供电质量,必须采取措施提高电感性负载额功率因数。 通常提高电感性负载功率因数的方法是在负载两端并
10、联适当数量的电容器,使负载的总无功功率减小,在传送的有功功率P不变时,使得功率因数提高,线路电流减小。当并联电容器时,总无功功率为Q为0,此时功率因数=1,线路电流I最小。若继续并联电容器,将导致功率因数下降,线路电流增大,这种现象称为过补偿。负载功率因数可以用三表法测量电源电压U、负载电流I和功率P,用公式计算。(a) (b)图2-12-1 日光灯电路原理图二、实验内容1按实验电路图2-12-2联接线路。2将开关K1闭合,电容支路开关K2断开 ,通电并观察日光灯的起辉过程,待灯管点亮后,将开关K1断开,测出实验数据表中C=0时的各项测量数据,记入表2-12-1内。3合上开关K2,改变电容C的
11、数值,将测量的数据均记入表2-12-1内。(注:每次改变电容之前,应先将开关K1闭合,待改变电容之后,再将开关K1断开) 图2-12-2 日光灯电路实验电路图 按照书上电路图组成实验电路,按下按钮开关,调节自耦变压器的输出电压为220V,记录功率表、功率因数表、电压表、电流表的读数,接入电容,从小到大增加电容容值,记录不同电容值时的功率表、功率因数表、电压表和电流表的读数,记入表中。三、实验数据及处理P(W)U(V)Uc(V)I(A)036.38220219.9 168.8110.6 0.350 L0.470.4736.54220219.2 168.5111.5 0.321 L0.51136.
12、87220219.6 168.4111.4 0.297 L0.561.4736.99220219.4 167.8112.3 0.273 L0.652.237.27220218.6 167.3112.0 0.231 L0.742.6737.26220219.0 167.3112.4 0.211 L0.823.237.23220218.4 167.8112.6 0.199 L0.873.6737.74220219.2 167.4112.3 0.187 L0.944.337.74220218.4 165.6113.5 0.182 L0.964.7737.79220219.1 167.5111.9 0
13、.185 L0.945.338.59220219.9 170.2111.8 0.192 L0.91结论 在日光灯电路中,在一定范围内,电容值越大,视在功率越少,有电源电压且电路的有功功率一定时,随电路的功率因素提高,它占用电源的容量S就降低,负载电流明显降低。实验报告三 虚拟一阶RC电路一、实验原理: 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方
14、波的重复周期远大于电路的时间常数,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。2.图3-1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数。3. 时间常数的测定方法 用示波器测量零输入响应的波形如图3-1(a)所示。根据一阶微分方程的求解得知ucUme-t/RCUme-t/。当t时,Uc()0.368Um。此时所对应的时间就等于。亦可用零状态响应波形增加到0.632 Um所对应的时间测得,如图3-1(c)所示。 (a) 零输入响应 (b) RC一阶电路 (c) 零状态响应图 3-14. 微分电路和积分电路是RC一阶电路中较典型的电路, 它对电路元件参数和输