同济大学线性代数第五版课后习题答案.doc

上传人:re****.1 文档编号:521791118 上传时间:2023-09-25 格式:DOC 页数:95 大小:1.58MB
返回 下载 相关 举报
同济大学线性代数第五版课后习题答案.doc_第1页
第1页 / 共95页
同济大学线性代数第五版课后习题答案.doc_第2页
第2页 / 共95页
同济大学线性代数第五版课后习题答案.doc_第3页
第3页 / 共95页
同济大学线性代数第五版课后习题答案.doc_第4页
第4页 / 共95页
同济大学线性代数第五版课后习题答案.doc_第5页
第5页 / 共95页
点击查看更多>>
资源描述

《同济大学线性代数第五版课后习题答案.doc》由会员分享,可在线阅读,更多相关《同济大学线性代数第五版课后习题答案.doc(95页珍藏版)》请在金锄头文库上搜索。

1、线性代数第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1); 解 =2(-4)3+0(-1)(-1)+118 -013-2(-1)8-1(-4)(-1) =-24+8+16-4=-4. (2); 解 =acb+bac+cba-bbb-aaa-ccc =3abc-a3-b3-c3. (3); 解 =bc2+ca2+ab2-ac2-ba2-cb2 =(a-b)(b-c)(c-a). (4). 解 =x(x+y)y+yx(x+y)+(x+y)yx-y3-(x+y)3-x3 =3xy(x+y)-y3-3x2 y-x3-y3-x3 =-2(x3+y3). 2. 按自然数从小到大为标准次序,

2、 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 (2n-1) 2 4 (2n); 解 逆序数为: 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) (2n-1)2, (2n-1)4, (2n-1)6, , (2n-1)(2n-2) (n-1个) (6)1 3 (2n-1) (2n) (2n-2) 2

3、. 解 逆序数为n(n-1) : 3 2(1个) 5 2, 5 4 (2个) (2n-1)2, (2n-1)4, (2n-1)6, , (2n-1)(2n-2) (n-1个) 4 2(1个) 6 2, 6 4(2个) (2n)2, (2n)4, (2n)6, , (2n)(2n-2) (n-1个) 3. 写出四阶行列式中含有因子a11a23的项. 解 含因子a11a23的项的一般形式为(-1)ta11a23a3ra4s,其中rs是2和4构成的排列, 这种排列共有两个, 即24和42. 所以含因子a11a23的项分别是 (-1)ta11a23a32a44=(-1)1a11a23a32a44=-a

4、11a23a32a44, (-1)ta11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42. 4. 计算下列各行列式: (1); 解 . (2); 解 . (3); 解 . (4). 解 =abcd+ab+cd+ad+1. 5. 证明: (1)=(a-b)3; 证明 =(a-b)3 . (2); 证明 . (3); 证明 (c4-c3, c3-c2, c2-c1得) (c4-c3, c3-c2得) . (4) =(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)(a+b+c+d); 证明 =(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)(

5、a+b+c+d). (5)=xn+a1xn-1+ +an-1x+an . 证明 用数学归纳法证明. 当n=2时, , 命题成立. 假设对于(n-1)阶行列式命题成立, 即 Dn-1=xn-1+a1 xn-2+ +an-2x+an-1, 则Dn按第一列展开, 有 =xD n-1+an=xn+a1xn-1+ +an-1x+an . 因此, 对于n阶行列式命题成立. 6. 设n阶行列式D=det(aij), 把D上下翻转、或逆时针旋转90、或依副对角线翻转, 依次得 , , , 证明, D3=D . 证明因为D=det(aij), 所以 . 同理可证 . . 7. 计算下列各行列式(Dk为k阶行列式

6、): (1), 其中对角线上元素都是a, 未写出的元素都是0; 解 (按第n行展开) =an-an-2=an-2(a2-1). (2); 解 将第一行乘(-1)分别加到其余各行, 得 , 再将各列都加到第一列上, 得 =x+(n-1)a(x-a)n-1. (3); 解 根据第6题结果, 有 此行列式为范德蒙德行列式. . (4); 解 (按第1行展开) . 再按最后一行展开得递推公式 D2n=andnD2n-2-bncnD2n-2, 即D2n=(andn-bncn)D2n-2. 于是 . 而 , 所以 . (5) D=det(aij), 其中aij=|i-j|; 解 aij=|i-j|, =(

7、-1)n-1(n-1)2n-2. (6), 其中a1a2 an0. 解 . 8. 用克莱姆法则解下列方程组: (1); 解 因为 , , , , ,所以 , , , . (2). 解 因为 , , , , , , 所以, , , , . 9. 问l, m取何值时, 齐次线性方程组有非零解? 解 系数行列式为 . 令D=0, 得 m=0或l=1. 于是, 当m=0或l=1时该齐次线性方程组有非零解. 10. 问l取何值时, 齐次线性方程组有非零解? 解 系数行列式为 =(1-l)3+(l-3)-4(1-l)-2(1-l)(-3-l) =(1-l)3+2(1-l)2+l-3. 令D=0, 得 l=

8、0, l=2或l=3. 于是, 当l=0, l=2或l=3时, 该齐次线性方程组有非零解. 第二章矩阵及其运算 1. 已知线性变换: , 求从变量x1, x2, x3到变量y1, y2, y3的线性变换. 解 由已知: , 故 , . 2. 已知两个线性变换 , , 求从z1, z2, z3到x1, x2, x3的线性变换. 解 由已知 , 所以有. 3. 设, , 求3AB-2A及ATB. 解 , . 4. 计算下列乘积: (1); 解 . (2); 解 =(13+22+31)=(10). (3); 解 . (4) ; 解 . (5); 解 =(a11x1+a12x2+a13x3 a12x1

9、+a22x2+a23x3 a13x1+a23x2+a33x3) . 5. 设, , 问: (1)AB=BA吗? 解 ABBA. 因为, , 所以ABBA. (2)(A+B)2=A2+2AB+B2吗? 解 (A+B)2A2+2AB+B2. 因为, , 但 , 所以(A+B)2A2+2AB+B2. (3)(A+B)(A-B)=A2-B2吗? 解 (A+B)(A-B)A2-B2. 因为, , , 而 , 故(A+B)(A-B)A2-B2. 6. 举反列说明下列命题是错误的: (1)若A2=0, 则A=0; 解 取, 则A2=0, 但A0. (2)若A2=A, 则A=0或A=E; 解 取, 则A2=A, 但A0且AE. (3)若AX=AY, 且A0, 则X=Y . 解 取 , , , 则AX=AY, 且A0, 但XY . 7. 设, 求A2, A3, , Ak. 解 , , , . 8. 设, 求Ak . 解 首先观察 , , , , , . 用数学归纳法证明: 当k=2时, 显然成立.

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 机械/制造/汽车 > 汽车试验与故障诊断

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号