《新人教版七年级数学上易错题.doc》由会员分享,可在线阅读,更多相关《新人教版七年级数学上易错题.doc(14页珍藏版)》请在金锄头文库上搜索。
1、4、观察下面一列数,探究其中的规律:-1, ,-,-,-,(1)填空:第11,12,13个数分别是 (2)第2012个数是 第n个数是 (3)如果这列数无限排列下去,与哪个数越来越近?答: 考点:规律型:数字的变化类专题:规律型分析:(1)把1等价于 经观察发现每一项的分子分别是1,分母等于各自的序号,如分母分别是1,2,3,4,5,6,又知奇数项是负数,偶数项是正数,所以第11,12,13个数分别是-,- 2)由(1)的分析可知第2012个数是 第n个数是(-1)n(3)分子为1,分母越大,越接近0解答:解:(1)将-1等价于-即:-, ,-,-,-,可以发现分子永远为1,分母等于序数,奇数
2、项为负数,偶数项为正,由此可以推出第11,12,13个数分别是-,-(2)第n个数是(-1)n 所以第2012个数为:(-1)2012 (1) 如果这列数无限排列下去,与0越来越近点评:本题是规律型的题目,主要考查由题中所给的一列数推出第n个数为(-1)n的规律,由规律分别求出第13个数和第2012个数的值.答案:-,- , ,(-1)n, 08、观察下列各组数,请找出它们的排列规律,并写出后面的2个数(1)-2,0,2,4,;(2)1,-,-,-,由题中条件可得数列的每个数即为-(-1)n(3)1,0,-1,0,1,0,-1,0,;(4)1,2,4,-6,8,10,-12,14,考点:规律型
3、:数字的变化类专题:规律型分析:(1)公差为2的等差数列;(2)从第二项其,以后的每个数为-(-1)n (3)1,0,-1,0每四个为1个循环;(4)2(n-1),且每逢6的倍数即为负值解答:解:(1)由题中条件可得其为公差为2的等差数列,所以后面两个数为6,8;(2) ,故后两个数为,(3)由题中数据可得其为四个一循环的数列,故后两个数为1,0;(4)数列中每逢是6的倍数即为负值,故后边的两个数为16,-18点评:本题主要考查了数字变化类得一些规律问题,能够找出题中的内在条件,从而求解20、北京、上海两厂能制造同型号电子计算机,除本地使用外,北京可调运给外地10台,上海可调运给外地4台,现协
4、议给重庆8台,武汉6台,每台运费如下表:现在有一种调运方案的总运费为7600元,问这种调运方案中北京、上海分别该给武汉、重庆各多少台? 终点起点武汉重庆北京400800上海300500考点:一元一次方程的应用专题:经济问题分析:等量关系为:400北京运往武汉的台数+800北京运往重庆的台数+300上海运往武汉的台数+500上海运往重庆的台数=7600,把相关数值代入求解即可解答:解:设北京运往武汉x台,则北京运往重庆(10-x)台,上海运往武汉(6-x)台,上海运往重庆(x-2)台400x+800(10-x)+300(6-x)+500(x-2)=7600,解得x=6,10-x=4,6-x=0,
5、x-2=4答:北京运往武汉6台,则北京运往重庆4台,上海运往武汉0台,上海运往重庆4台点评:考查了一元一次方程的应用,得到北京和上海运往各地的机器台数的代数式是解决本题的突破点,得到总运费的等量关系是解决本题的关键27、观察下列单项式:x,-3x2,5x3,-7x4的构成规律并回答下列问题:得第n项为(-1)n+1(2n-1)xn,1、它的第100项是什么?2、它的第n(n为正整数)项是什么?3、当x=1时,求前2012项 的和。考点:单项式专题:规律型分析:通过观察题意可得:每一项都是单项式,其中系数为(-1)n+1(2n-1),字母是x,x的指数为n的值由此可解出本题解答:解:依题意,得第
6、n项为(-1)n+1(2n-1)xn,故第100个单项式是-199x100;当x=1时,求前2012项的和为-2012。点评:本题是一道找规律的题目,这类题型在中考中经常出现对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的29、东方公园的门票价格如下表所示:购票人数150人51100人100人以上每人门票价13元11元9元某校初一(1)(2)两个班去游览东方公园,其中(1)班人数较少,不足50人;(2)班人数较多,有50多人,但两个班合起来超过100人如果两个班都以班为单位分别购票,则一共应付1240元;如果两个班联合起来,作为一个团体购票,则只需付936元(3)你认为是否存
7、在这样的可能:51100人之间买票的钱数与100人以上买票的钱数相等?如果有,是多少人与多少人买票钱数相等?(3)假设存在买票钱数相等的状况,即:人数在51100人之间时的人数相应的票价=人数在100人以上时的人数相应的票价,如果有满足等量关系的量,则成立,反之,不成立解答:解: (3)设51100人之间有m人,100人以上有n人假设存在买票钱数相等的状况就是满足11m=9n,m100,n100,符合题意的正整数解,各为90人与110人,99人与121人点评:本题考查二元一次方程组的应用,解题关键是弄清题意,分别要区分不同的人数相对应的不同的票价,然后找出合适的等量关系46 重百超市开展春节促
8、销活动出售A、B两种商品,活动方案有如下两种:活动一AB标价(单位:元)90100每件商品返利按标价的30%按标价的15%例:买一件A商品,只需付款90(1-30%)元活动二若所购商品超过100件(不同商品可累计),则按标价的20%返利(同一种商品不可同时参与两种活动)(2)若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由考点:一元一次方程的应用专题:经济问题(2)若购买总数没有超过100时,很明显应该按方案一购买;若购买总数超过100时,利用两种购买方式进行比较可以得到结论(2)依题意得:x+2x+1=100,
9、解得:x=33,当总件数不足100,即x33时,只能选择方案一的优惠方式;当总件数达到或超过100,即x33时,方案一需付款:90(1-30%)x+100(1-15%)(2x+1)=233x+85,方案二需付款:90x+100(2x+1)(1-20%)=232x+80,因为(233x+85)-(232x+80)=x+50所以选方案二优惠更大47 已知线段AB的长为10cm,C是直线AB上一动点,M是线段AC的中点,N是线段BC的中点(1)若点C恰好为线段AB上一点,则MN= cm;(2)猜想线段MN与线段AB长度的关系,即MN= AB,并说明理由48 某中学租用两辆小汽车(速度相同)同时送1名
10、带队老师和7名七年级学生到市区参加数学竞赛每辆车限坐4人(不包括司机),其中一辆小汽车在距离考场15千米的地方出现故障,此时离截止进考场时刻还有42分钟,这时唯一可利用的只有另一辆小汽车,且这辆车的平均速度是60千米/时,人步行速是15千米/时(人上下车的时间不记)(1)若小汽车送4人到达考场后再返回到出故障处接其他4人请你通过计算说明能否在截止进考场的时刻前到达考场?(2)带队老师提出一种方案:先将4人用车送到考场,另外4人同时步行前往考场,小汽车到达考场后返回再接步行的4人到达考场请你通过计算说明方案的可行性(3)所有学生、老师都到达考场,最少需要多少时间?考点:一元一次方程的应用专题:行
11、程问题;方案型分析:(1)由于小汽车在距离考场15千米的地方出现故障,所以另一辆小汽车把自己车上的人送到市区后再回来送这一批人所走的路程应该为153,如果根据已知条件计算即可判断是否进考场的时刻前到达考场;(2)设这车送4人到达后返回,再经过x小时后碰到另外步行的4人,那么车和步行的人是相遇问题,由此即可路程方程解决问题;(3)用车送4人,另4人同时步行,车送到某一地点时让车上4人下车步行,车返回去接先期步行的4人,当8人同时到达考场时,所需要的时间为最少解答:解:(1)所需要的时间是:1536060=45分钟,4542,不能在截至进考场的时刻前到达考场(2)先将4人用车送到考场,另外4人同时
12、步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场先将4人用车送到考场所需时间为 =0.25(h)=15(分钟)0.25小时另外4人步行了1.25km,此时他们与考场的距离为15-1.25=13.75(km),设汽车返回t(h)后先步行的4人相遇,5t+60t=13.75,解得t=汽车由相遇点再去考场所需时间也是 h所以用这一方案送这8人到考场共需15+26040.442所以这8个人能在截止进考场的时刻前赶到(3)8人同时出发,4人步行,先将4人用车送到离出发点xkm的A处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场,由A处步行前考场需(h),汽
13、车从出发点到A处需(h)先步行的4人走了5(km),设汽车返回t(h)后与先步行的4人相遇,则有60t+5t=x-5,解得t=,所以相遇点与考场的距离为:15-x+60=15-(km)由相遇点坐车到考场需:( -)(h)所以先步行的4人到考场的总时间为:(+ + -)(h),先坐车的4人到考场的总时间为:(+ )(h),他们同时到达则有: + + -=+ ,解得x=13将x=13代入上式,可得他们赶到考场所需时间为:( +)60=37(分钟)3742,他们能在截止进考场的时刻前到达考场点评:此题比较难,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解50 阅读
14、材料,解决问题:由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,不难发现3的正整数幂的个位数字以3、9、7、1为一个周期循环出现,由此可以得到:因为3100=3425,所以3100的个位数字与34的个位数字相同,应为1;因为32009=34502+1,所以32009的个位数字与31的个位数字相同,应为3(1)请你仿照材料,分析求出299的个位数字及999的个位数字;(2)请探索出22010+32010+92010的个位数字;(3)请直接写出92010-22010-32010的个位数字考点:尾数特征;有理数的乘方专题:规律型分析:(1)此题不难发现:2n的个位数字是2,4,8,6四个一循环,所以994=243,则299的个位数字是8;9n的个位数字是9,1两个一循环,所以992=491,则999的个位数字是9(2)分别找出22010和32010和92010的个位数字,然后个位数字相加所得个位数字就是22010+32010+92010的个位数字(3)分别找出92010和22010和32010的个位数字,然后个位数字相减所得个位数字就是92010-22010-32010的个位数字,注意不够借位再减解答:解