文档详情

牛头刨床机械原理课程设计3点和9点

M****1
实名认证
店铺
DOCX
168.60KB
约19页
文档ID:517563673
牛头刨床机械原理课程设计3点和9点_第1页
1/19

课程设计说明书一牛 头 刨 床1.机构简介牛头刨床是一种用于平面切削加工的机床电动机经皮带和齿轮传动, 带动曲柄2和固结在其上的凸轮8刨床工作时,由导杆机构2-3-4-5-6 带动刨头6和刨刀7作往复运动刨头右行时,刨刀进行切削,称工作 行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量; 刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生 产率为此刨床采用有急回作用的导杆机构刨刀每次削完一次,利用 空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构, 使工作台连同工件作一次进给运动,以便刨刀继续切削刨头在工作行 程中,受到很大的切削阻力,而空回行程中则没有切削阻力因此刨头 在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转, 故需安装飞轮来减少主轴的速度波动,以提高切削质量和减少电动机容 量°) d>图1-11.导杆机构的运动分析已知 曲柄每分钟转数n2,各构件尺寸及重心位置,且刨头导路x-x 位于导杆端点B所作圆弧高的平分线上要求 作机构的运动简图,并作机构两个位置的速度、加速度多边形以及刨头的运动线图以上内容与后面动态静力分析一起画在1号图纸上。

1. 1设计数据牛头刨床是一种用于平面切削加工的机床电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动刨头右行时,刨刀进行切削,称工作切削此时要求速度较低且均匀,以减少电动机容量和提高切削质量;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产效率为此刨床采用急回作用得导杆机构刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮机构带动螺旋机构,使工作台连同工件作一次进给运动,以便刨刀继续切削刨头在工作行程中,受到很大的切削阻力,而空回行程中则没有切削阻力因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需装飞轮来减小株洲的速度波动,以减少切削质量和电动机容量设计内容导杆机构的运动分析符号n2L0204L02ALo4BLBCLo4s4xS6yS6单位r/minmm方案III60380110540°叫°.5 lo4B240501. 2曲柄位置的确定曲柄位置图的作法为:取1和8 '为工作行程起点和终点所对应的曲柄 位置,1'和7 '为切削起点和终点所对应的曲柄位置,其余2、3…12 等,是由位置1起,顺e 2方向将曲柄圆作12等分的位置(如下图)。

巫I—LI2CD504对CD03D取第方案的第9位置和第3位置(如下图)1. 3速度分析以速度比例尺卩=(0. 0 1m/s) /mm和加速度比例尺卩a = (0. 05m/s2 ) /mm用相对运动的图解法作该两个位置的速度多边形和加速度多边形如下图1-4 , 1-5 ,并将其结果列入表格(1-2 )表格1-1位置未知量方程VA 4u =u +uA4 A3 A4A3大小 ? V ?方向丄O4A 丄O2A 〃04B和9 杆VCu =u +uC5 B5 C5B5大小 ? V ?方向 〃XX 丄04B 丄BCaAa = + a t= a n + a K + a rdA4 a n dA4 dA3 dA4A3 “A4A3A 4大小.O 2l ? 7 2 O u ?大小:4 04A 4 A4 A3方向:BfA 丄04B AfO2 丄04B (向左) 〃04B (沿导路)aca a a n a T c5= B5+ c5B5 + c5B5大小 ? V V ?方向 〃XX V C-B 丄BC3号位置速度图:如图bP由图解得:V=0・6686416567m/sc3号位置加速度图:4aacP .i — 一一…一一—_•…r —b' b"有图解得a =4・5795229205m/sc9号位置速度图a4^a3b.pc由图解得.V =0・6305476693m/s9号位置加速度图b'b"由图解得a =8・8240123081m/sc表格(1-2)位置要求图解法结果3v ( m/s)c0. 6686416567a (m/s2 )c0. 5 122055 19529vc ( m/s )0. 6305476693ac (m/s 2)8. 824012308 1各点的速度,加速度分别列入表1-3 , 1-4中表1-3'项目位置 、'、\3 23 4VAVBVc36. 7020643281. 16322670. 486925320. 67467 1530. 6686416597286796. 7020643281. 10791330. 324856840. 642589750. 63054766363910893单位r/sr/sm/s表1-4x目位置\aA3anA 4atA 4anBatBaC34. 04258990. 56640453. 21416284. 52208370. 51220782081955195294. 04258990. 35991324. 5323066& 99356918. 824016344999972308 1单位m / s 21.4导杆机构的动态静力分析 设计数据导杆机构的动静态分析G4G6PypJs4Nmmkg m22208009000801.2已知 各构件的重量G (曲柄2、滑块3和连杆5的重量都可忽略不计),导杆4绕重心的转动惯量Js4及切削力P的变化规律。

要求 求各运动副中反作用力及曲柄上所需要的平衡力矩以上内容做在运动分析的同一张图纸上首先按杆组分解实力体,用力多边形法决定各运动副中的作用反力和 加于曲柄上的平衡力矩参考图1-3,将其分解为5-6杆组示力体, 3-4杆组示力体和曲柄图2-12. 1矢量图解法:取3号位置为研究对象:2. 1. 15-6杆组示力体共受五个力,分别为P、G、F、6 i6R 、R16 45其中R45和R16方向已知,大小未知,切削力P沿X轴方向,指向刀架,重力G6和支座反力F16均垂直于质心,R45沿杆方向由C指向B,惯性力Fi6大小可由运动分析求得,方向水平向左选取比例尺“(10N)/mm,作力的多边形将方程列入表2-1U=10N/mm已知 P=9000N, G6=800N,又ac=ac5=4-5795229205m/s2,那么我们可以计算FI6=- G6©ac=-800/10x4.5795229205=-366.361834N又工F二P +G ++ F +F T =0,6I645RI6 '方向//x轴<—B—C大小9000800V?•?•作为 多边行如图 1-7F16F45I<_6F:.■GM图1-7 图1-7力多边形可得:F =8634.49503048N45N=950.05283516 N在图1-6中,对c点取距,有工 M =-P・y -G X + F •x-F •y =0C P 6 S6 R16 I6 S6代入数据得x=1.119°7557m分离3,4构件进行运动静力分析,杆组力体图如图1-8所示,2. 1. 2对3-4杆组示力体分析u=10N/mm已知. F =-F =8634.49503048N, G =220N匚知• 54 45 4g尸J/ 】CA=2・2610419m/s2 ,B4 A4 O4S4 O4A 'a.=^ =7.79669621rad/s2S4 4由此可得:Fi4=-G4/gxas4 =-220/10x2.2610419N=-49.7429218NM =-J ・a =-9 35603545S4 JS4 S4在图1-8中,对O4点取矩得:Mo =M + F, xx + F xx + F xx + G xx =04- s4 I4 4 23 23 54 54 4 4 -代入数据,得Mo4=-9,35603545-49,7429218 X0,29+F23X0,41859878959+8634.49503048 x0.57421702805+220x0.04401216867=0故 F23=11810.773NF +xF +yG4 +F +I4F23 +F54= 0方向:?•?•VM4o44 4VV大小:VV1V丄O4BVG54Fx F14由图解得:F =2991.6124744NxF =1414.4052384N 方向竖直向下y2.1.3 对曲柄分析,共受2个力,分别为R32,R12和一个力偶M,R = R由于滑块3为二力杆,所以R32 R34,方向相反,因为曲柄一 FR FR2只受两个力和一个力偶,所以尺空与 R32等大反力,由此可以求得:32F12h2=72.65303694mm,则,对曲柄列平行方程有,SM =M-F •h =0 即O2 32 2 即即 M=858.088527N・MM=0.07265303694*11810.773=0,。

下载提示
相似文档
正为您匹配相似的精品文档