总结报告角度随动控制系统

上传人:夏** 文档编号:513737000 上传时间:2023-04-07 格式:DOCX 页数:19 大小:506.28KB
返回 下载 相关 举报
总结报告角度随动控制系统_第1页
第1页 / 共19页
总结报告角度随动控制系统_第2页
第2页 / 共19页
总结报告角度随动控制系统_第3页
第3页 / 共19页
总结报告角度随动控制系统_第4页
第4页 / 共19页
总结报告角度随动控制系统_第5页
第5页 / 共19页
点击查看更多>>
资源描述

《总结报告角度随动控制系统》由会员分享,可在线阅读,更多相关《总结报告角度随动控制系统(19页珍藏版)》请在金锄头文库上搜索。

1、课程设计报告项目名称:角度随动系统专 业:信息工程学 号:摘要本次设计的是角度随动系统,主要运用到了模拟电路的相关知识 来设计系统的硬件,实现角度自动控制。通过控制前端转动角度的大 小来控制系统末端的角度。主要由电位器、电阻、齿轮、运放、功放、 电机等部件组成,使之可以通过一个电位器的转动以达到控制末端角 度跟随变化。关键词:角度控制、电机、角度随动AbstractThe design Angle servo,using the related knowledge of analog circuit to confirm the hardware,can realize the automat

2、ic angle control. The angle at the end of the system can follow the change of the angle at the beginning of the system. The automatic control system mainly consists of potentiometers, resistances, gears , operational amplifier , power amplifier, a motor and etc.Keywords: Angle control, Motor, Angle

3、tracking目录摘要一、引言1.1角度随动系统的应用背景1.2 角度随动系统实现功能二、系统方案论证2.1 总体方案思路2.2 方案比较论证三、角度随动系统3.1 系统框图3.2 角度随动系统的结构组成3.3 角度随动系统的工作原理3.4系统数学模型的建立四、系统电路原理图4.1 综合电路4.2 电路模块分析五、系统实物及性能测试5.1器件的选择5.2 实物图5.3 性能测试及校正六、结束语七、参考文献引言1.1 角度随动系统的应用背景随着社会的发展,科技的进步,自动控制系统在各个领域的应用越来越 广泛,智能化已是现代控制系统发展的主流方向。近年来,角度控制系统虽 然在人们日常生活中的运用

4、并不多见,但是在工业中的应用却十分广泛,在 军事中的运用也举足轻重,角度控制的方案也多种多样,不同的角度控制系 统,优缺点各异。针对实际情况,设计一个角度控制系统,具有广泛的应用 前景与实际意义。如今,在传感技术、交通、电力和航天等行业,尤其是军事中雷达的运 用,都要求很高的角度控制,在当今社会,角位置控制系统,运用会越来越 广泛。1.2 角度随动系统实现功能在自动控制系统的前端,有一个角度控制器,通过调节该角度控制器的 角度,在自动控制系统的末端,会有一个跟随的角度变化,达到后端角度转 动和前端手动的调节的角度一致,从而达到角度跟随的作用。二、系统方案论证21 总体方案系统思路控制末端的角度

5、随着前端旋钮的角度一起变化,并且保持一致,而且可 以反向调节,就得根据闭环负反馈系统的相关理论,在末端角度部分有一个 反馈信号到前端输入部分,从而控制末端角度到达目标角度时能够停止转 动。在本次设计中被控对象是系统输出端的角度,通过前端角度变化来控制 末端角度的变化,通过下面三种方案进行比较。22 方案比较论证方案一:前端角度变化通过齿轮的相互咬合,将这一角度变化传递到末端角度器 的下端,通过齿轮将角度传递到末端角度变化。方案二: 以单片机为核心,通过外围电路以及内部程序来控制角度的变化。方案三:通过两个电位器,两个电位器均能输出电压,一个作为输入角度变化的 电压,一个作为末端角度变化反馈的电

6、压,分别接入到差分电路的两端,当 差分电路的输出电压差不为 0 时,电机转动,带动末端的电位器转动,反馈 的电压也就发生变化;当输出的电压差为 0 时,电压停止转动,则可以通过此方法实现角度控制,且存在反馈系统。方案一的优点是组成元件和整个系统结构都十分简单,但是只有齿轮传 动,速度较慢,而且精度也不够,很难符合要求。方案二用到单片机系统, 经费会超出预算,且内部程序比较繁琐不适合使用。方案三电路不是很复杂, 不需要内部程序,而且精度和调节时间也可以符合要求。通过上述三种方案的优缺点之间的比较,本次设计中采用方案三。三、角度随动系统3.1系统框图本次实验,采用上述的方案三,则其系统框图如下:图

7、3.1角度随动系统框图此处前端电位器,可以使用多圈电位器,能够实现角度变化带动电位器 的变化要求,末端电机转动带动电位器的变化,可以使用马达电位器,也能 够实现电机转动带动电位器的变化。差分电路是该系统的核心部分。由于电 机转动的要求电压较高,而差分电路输出的电压会出现较小的值,不能驱动 电机转动,从而达不到角度一致的要求,所以加入功放电路来驱动电机。32角度随动系统的结构组成位置随动系统的原理图如图1-1。该系统的作用是使负载J(工作机械) 的角位移随给定角度的变化而变化,即要求被控量复现控制量。系统的控 制任务是使工作机械随指令机构同步转动即实现:Q(c)=Q(r)图3.2位置随动系统原理

8、图Z1电动机,Z2减速器,J工作机械系统系统主要由以下部件组成:系统中手柄是给定元件,手柄角位移 Qr 是给定值(参考输入量),工作机械是被控对象,工作机械的角位移 Qc 是被控量(系统输出量),电桥电路是测量和比较元件,它测量出系统输入 量和系统输出量的跟踪偏差(Qr-Qc)并转换为电压信号Us,该信号经可控 硅装置放大后驱动电动机,而电动机和减速器组成执行机构。33 角度随动系统的工作原理控制系统的任务是控制工作机械的角位移 Qc 跟踪输入手柄的角位移Qr。如图3.2,当工作机械的转角Qc与手柄的转角Qr 一致时,两个环形电 位器组成的桥式电路处于平衡状态。其输出电压Us=O,电动机不动,

9、系统 处于平衡状态。当手柄转角Qr发生变化时,若工作机械仍处于原来的位置 不变,则电桥输出电压Us不等于0,此电压信号经放大后驱动电动机转动, 并经减速器带动工作机械使角位移Qc向Qr变化的方向转动,并逐渐使Qr 和Qc的偏差减小。当Qc=Qr时,电桥的输出电压为0,电机停转,系统达 到新的平衡状态。当Qr任意变化时,控制系统均能保证Qc跟随Qr任意变 化,从而实现角位移的跟踪目的。34 系统数学模型的建立直流电机电枢回路电压平衡方程为:1 u (t) = L dia + i R + E(3-1)a a dt a a aE是电枢反电势,E = K o,K为与电动机反电势有关的比例系数。aa e

10、 m eM (t)二K i (t),K为电动机的转矩系数,M (t)是电枢电流产生的电 mm amm磁转矩。电动机轴上的转矩平衡方程为:J空m + Bo = M (t)-M (t)(3-2)dtmmc暂不考虑负载转矩,则电动机的输出转矩来驱动负载并且并克服粘性摩擦 故得转矩平衡方程为:d 20J mdt2+ B也dt3-3)忽略电动机电枢电感L,利用(1)式与(3)式消去中间量i (t),对变量ua a a与0m作拉普拉斯变换得irua(s)0 (s 2Js 2 0(s)+Bs 0(s)aa即有:Km()0 (s)RG (S) =a-1Ua (S)S (JS + B + Km; Ke )a3-

11、4)上式(4)为直流电机的传递函数。电机的模型为一二阶系统。由于电机的转速通常较快,在电机与末端角度控制器通常有一个齿轮减速器进行减速。i减速器速比直流电机的数学模型建立:La电动机电枢绕组的电感Ra电动机电枢绕组的电阻Km电动机的转矩系数Ke与电动机反电势有关的比例系数J折算到电动机轴上的总转动惯量B折算到电动机轴上的总粘性摩擦系数直流电机电枢回路电压平衡方程为:u (t) = Laadia-dt3-5)E是电枢反电势,E = K o,K为与电动机反电势有关的比例系数。 aa e m eM (t) = K i (t),K为电动机的转矩系数,M (t)是电枢电流产生的电磁转矩。 mm amm电

12、动机轴上的转矩平衡方程为:J空m + Bo = M (t)-M (t)(3-6)dtm mc暂不考虑负载转矩,则电动机的输出转矩来驱动负载并且并克服粘性摩擦, 故得转矩平衡方程为:+ bLdt3-7)d 20J mdt2忽略电动机电枢电感 L ,利用(3-5)式与(3-7)式消去中间量 i (t) ,对变 aa量 u 与0am作拉普拉斯变换得!TUa (s)(s)= Js 2 0(s)+ Bs 0(s)aaKm即有:G1(s)=船=RaK K(3-8)Ua (S) S (JS + B + KmR Ke )a上式( 3-8)为直流电机的传递函数。电机的模型为一二阶系统。由于电机 的转速通常较快,

13、在电机与车轮之间通常有一个齿轮减速器进行减速。i减速器速比一减速器速比根据以上介绍,整个系统的开环传递函数为:G(s) =sa kk(3_9)RS (JS + B + KKe)iRa这里忽略电动机的电枢电感La,令K = KsKaKm称为增益,F二B + KmKe1 RiRa称为阻尼系数,则该自动位移控制系统的开环传递函数为G(s) = s霊+1),其中K = KJ F是开环增益,是需要选定的系统参数,T = J / F为系统的时间常数, 一般是为系统保留下来的固有参数。则可以得到系统相应的闭环传递函数为:(s)=KTS 2 + S + K6)该系统可以简化为一个简单地二阶系统,其原理框图如下

14、:+J+1 +J图3系统简化框图各参数的含义如上,根据电动机的数据手册及其它模块各参数的计算选取, 获得本设计的开环传递函数为:G (S )=4 Ka S (S + 2.2)155S (S + 2.2)系统的开环增益约为155,时间常数为2.2s。四、系统电路原理图41综合电路图4.1总体电路原理图该原理图是一个整体的设计,左上端电位器就是输入的角度电位器,调节次 电位器的角度,通过电压跟随器输入到差分电路的输入端,把差分电路的输出经 过比较器,进入到加法器输入,加法器的输出,控制末端负载电机的转动,在电 机转动的过程中,带动末端电位器的变化,即此处左下端的电位器。从而产生一 个反馈的功能,当

15、差分电路两个输入的电压不一致时,电机会转动,当其电压一致时,电机就停止转动。42电路模块分析1、电压跟随器在电路原理图可以看见用到了四组电压跟随器的作用,电压跟随器 有一个显著的特点就是输入阻抗高,输出阻抗低,且输出的电压和输入 的电压相同,在此处主要的作用是起到“隔离“的作用。对前级电路呈 高阻状态,对后级电路呈低阻状态,起到隔离作用,防止电路前后级产 生影响。2、电压比较器此处运放负端接到地,即参考电压为0。当运放正端的输入大于0 时,则比较器的输出大于0;当运放正端的输入小于0时,则比较器的输 出小于0。在此电路中,运放的正端接入的是上级差分电路的输出,当 差分电路输出大于0,则比较器也输出大于0,从而控制电机正传;输入 小于0

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号