海泡石-沸石粉掺杂癸酸相变微胶囊的温湿特性及作用机理论文设计

上传人:壹****1 文档编号:513723934 上传时间:2023-12-08 格式:DOCX 页数:69 大小:8.61MB
返回 下载 相关 举报
海泡石-沸石粉掺杂癸酸相变微胶囊的温湿特性及作用机理论文设计_第1页
第1页 / 共69页
海泡石-沸石粉掺杂癸酸相变微胶囊的温湿特性及作用机理论文设计_第2页
第2页 / 共69页
海泡石-沸石粉掺杂癸酸相变微胶囊的温湿特性及作用机理论文设计_第3页
第3页 / 共69页
海泡石-沸石粉掺杂癸酸相变微胶囊的温湿特性及作用机理论文设计_第4页
第4页 / 共69页
海泡石-沸石粉掺杂癸酸相变微胶囊的温湿特性及作用机理论文设计_第5页
第5页 / 共69页
点击查看更多>>
资源描述

《海泡石-沸石粉掺杂癸酸相变微胶囊的温湿特性及作用机理论文设计》由会员分享,可在线阅读,更多相关《海泡石-沸石粉掺杂癸酸相变微胶囊的温湿特性及作用机理论文设计(69页珍藏版)》请在金锄头文库上搜索。

1、海泡石-沸石粉掺杂癸酸相变微胶囊的温湿特性及作用机理Temperature Humidity Characteristics and Mechanism of Sepiolite-Zeolite Powder doped Capric Acid Phase Change Microcapsules摘要摘 要相变微胶囊是一种将相变材料封装在微胶囊内部,通过吸收或释放大量的潜热来进行温度调控的储能材料。无机多孔材料,比如沸石粉和海泡石等可以通过自身特性,感应环境中湿度变化来调节环境中的湿度。为了使调温材料与调湿材料两者独特功能结合在一起,在无机多孔材料中掺杂相变微胶囊制备出一种能够调节环境温湿度,

2、减少能源消耗的绿色材料,为解决生态建筑的温湿特性问题提供材料支持与理论基础。本文通过原位聚合法制备了以脲醛树脂(UF)为壁材,癸酸为芯材的相变微胶囊,研究了芯壁质量比、乳化剂用量、乳化转速及固化剂含量等因素对相变微胶囊制备工艺的影响,表征了癸酸相变微胶囊的微观形貌、化学结构、防渗性能和储热性能。研究了氧化石墨烯(GO)掺量对癸酸相变微胶囊的热性能影响,表征了微观形貌、粒径分布、储热性能、导热性能及热稳定性能,分析其作用机理;最后将制备好的癸酸相变微胶囊掺入到海泡石-沸石粉基体中,表征了其抗压强度,导热系数、孔结构及温湿性能,并将其应用在实际环境中来检测其温湿特性。得出了以下的结论:1由正交实验

3、结果分析,影响癸酸相变微胶囊包覆率的主次因素为芯壁比(A)乳化剂用量(E)乳化转速(H)固化剂用量(Q),癸酸相变微胶囊制备的最佳条件为A2E2H3Q2,即芯壁比3:2、乳化剂用量5%、乳化转速1400r/min和固化剂用量12%。2与癸酸相变微胶囊S相比,癸酸相变微胶囊P的整体分散性良好且大小均一,渗漏率降低了57.2%,包覆率提高了132.3%,说明癸酸相变微胶囊P具有良好的防渗性能和储热性能。3与MEPCMs相比,MEPCMs-0.3%GO、MEPCMs-0.6%GO和MEPCMs-0.9%GO的表面相对较光滑,但随着GO含量的增加,癸酸相变微胶囊的粗糙度会有所增加,并且在一定GO范围之

4、内,其粒径随着GO含量的增加而增加;当GO含量小于0.6%时,癸酸相变微胶囊的包覆率会随着GO含量的增加而增加,当GO 含量大于0.6%时,包覆率会随 GO含量增加而下降,与MEPCMs相比,MEPCMs-0.3%GO、MEPCMs-0.6%GO和MEPCMs-0.9%GO的导热系数分别升高了16.1%、51.5%和75.1%。4在热循环实验中,脲醛树脂对癸酸的包封较好,相变循环后癸酸相变微胶囊不会出现破损,癸酸在相变过程中没有出现泄露,癸酸相变微胶囊具有较好的热稳定性。这是由于GO能稳定的包埋或镶嵌在脲醛树脂壁材中,在脲醛树脂表面和内部形成传热通道,提高了癸酸相变微胶囊的储热能力。5癸酸相变

5、微胶囊能良好的结合在海泡石-沸石粉基体中,但随着癸酸相变微胶囊掺量的增加,海泡石-沸石粉掺杂癸酸相变微胶囊的导热系数与抗压强度会减小。6在实际环境的温湿效果测试中,与室外环境温湿度相比,海泡石-沸石粉掺杂癸酸相变微胶囊的温湿度能稳定在一个良好的温湿度范围之内,并且随着癸酸相变微胶囊含量的增加,对于湿度调节变化略有影响,但对温度调节会有明显作用。7、海泡石与沸石粉由于都存在较大的比表面积,宽阔的孔穴和孔道而产生毛细管凝聚吸附和表面吸附两种调湿方式,将癸酸相变微胶囊掺杂到海泡石-沸石粉基体中,癸酸相变微胶囊能很好的镶嵌其中,使得海泡石-沸石粉掺杂癸酸相变微胶囊具有良好的温湿特性。关键词:癸酸;相变

6、微胶囊;海泡石-沸石粉;温湿特性;作用机理AbstractABSTRACTPhase change microcapsules are energy storage materials that encapsulate phase change materials in the microcapsules and regulate the temperature by absorbing or releasing a large amount of latent heat. Inorganic porous materials, such as zeolite powder and sepio

7、lite, can adjust the humidity in the environment by their own characteristics and sensing the humidity change in the environment. In order to combine the unique functions of temperature regulating materials and humidity regulating materials, a green material which can adjust temperature humidity and

8、 reduce the energy consumption is prepared by doping phase change microcapsules in inorganic porous materials, which provides material support and theoretical basis for solving the problem of temperature and humidity characteristics of ecological buildings.In this paper, phase change microcapsules w

9、ith capric acid as core material and ureaformaldehyde resin (UF) as shell material were synthesized by in situ polymerization. The factors affecting the coating rate of microcapsules such as core-wall mass ratio, emulsifier dosage, emulsifying speed and curing agent content on the preparation proces

10、s of phase change microcapsules were studied. The morphology, chemical structure, anti-seepage performance and thermal storage properties of capric acid microcapsules were characterized. The effects of the amount of graphene oxide (GO) on the thermal properties of capric acid phase change microcapsu

11、les were studied. The micro morphology, particle size distribution, thermal storage, thermal conductivity and thermal stability were characterized, and the mechanism was analyzed; Finally, the prepared capric acid phase change microcapsules were added into sepiolite-zeolite powder matrix to characte

12、rize its compressive strength, thermal conductivity, pore structure and temperature humidity properties, and were applied in the actual environment to detect its temperature humidity properties. The conclusion is as follows:1. According to the results of orthogonal experiment, the main and secondary

13、 factors affecting the coating rate of capric acid phase change microcapsules are core-wall mass ratio (A) emulsifier dosage (E) emulsifying speed (H) curing agent content (Q). The best conditions for the preparation of capric acid phase change microcapsules are A2E2H3Q2, that is, core-wall mass rat

14、io 3:2, emulsifier dosage 5%, emulsifying speed 1400 r/min and curing agent content 12%.2. Compared with those of the capric acid phase change microcapsules S, the leakage rate of capric acid phase change microcapsules P decreased by 57.2%, while the coating rate increased by 132.3%. Capric acid pha

15、se change microcapsules P possessed good thermal properties.3. Compared with MEPCMs, the surfaces of MEPCMs-0.3%GO, MEPCMs-0.6%GO and MEPCMs-0.9%GO are relatively smooth, but with the increase of GO content, the surface roughness of capric acid phase change microcapsules will increase. When the GO c

16、ontent is less than 0.6%, the encapsulation ratio of capric acid phase change microcapsules increases with the increase of the GO content, when the GO content is more than 0.6%, the encapsulation ratio decreases with the increase of the GO content. Compared with MEPCMs, the thermal conductivity of MEPCMs-0.3%GO, MEPCMs-0.6%GO and MEPCMs-0.9%GO increased by 16.1%, 51.5% and 75.1%, respectively.4. In the thermal cycle experiment,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 毕业论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号