电感、变压器的高频特性与损耗、

上传人:工**** 文档编号:513413806 上传时间:2023-06-29 格式:DOCX 页数:17 大小:456.94KB
返回 下载 相关 举报
电感、变压器的高频特性与损耗、_第1页
第1页 / 共17页
电感、变压器的高频特性与损耗、_第2页
第2页 / 共17页
电感、变压器的高频特性与损耗、_第3页
第3页 / 共17页
电感、变压器的高频特性与损耗、_第4页
第4页 / 共17页
电感、变压器的高频特性与损耗、_第5页
第5页 / 共17页
点击查看更多>>
资源描述

《电感、变压器的高频特性与损耗、》由会员分享,可在线阅读,更多相关《电感、变压器的高频特性与损耗、(17页珍藏版)》请在金锄头文库上搜索。

1、绕组高频效应及其对损耗的影响1. 集肤效应1.1 集肤效应的原理图 1.1 表示了集肤效应的产生过程。图中给出的是载流导体纵向的剖面图,当导体流过电流 (如图中箭头方向)时,由右手螺旋法则可知,产生的感应磁动势为逆时针方向,产生进入 和离开剖面的磁力线。如果导体中的电流增加,则由于电磁感应效应,导体中产生如图所示 方向的涡流。由图可知:涡流的方向加大了导体表面的电流,抵消了中心线电流,这样作用 的结果是电流向导体表面聚集,故称为集肤效应。在此引进一个集肤深度Skin dep th的 概念,此深度的电流密度大小恰好为表面电流密度大小的1/e倍:一般用集肤深度来表示集肤效应,其表达式为:八(1.1

2、)其中:Y为导体的电导率,M为导体的磁导率,f为工作频率。图 1.1. 集肤效应产生过程示意图图 1.2. 高频导体电路密度分布图高频时的导体电流密度分布情形,大致如图 1.2 所示,由表面向中心处的电流密度逐渐减小。由上图及式 1.1 可知,当频率愈高时,临界深度将会愈小,结果造成等效阻值上升。因此在高频时 电阻大小随着频率而变的情形,就必须加以考虑进去。1.2 影响及应用在高频电路中可以采用空心导线代替实心导线。此外,为了削弱趋肤效应,在高 频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线, 这种 多股线束称为辫线。在工业应用方面,利用趋肤效应可以对金属进行表面淬火。考

3、虑到交流电的集肤效应,为了有效地利用导体材料和便于散热,发电厂的大电 流母线常做成槽形或菱形母线;另外,在高压输配电线路中,利用钢芯铝绞线代替铝 绞线,这样既节省了铝导线,又增加了导线的机械强度,这些都是利用了集肤效应这 个原理。集肤效应是在讯号线里最基本的失真作用过程之一, 也有可能是最容意被忽略误 解的。与一般讯号线的夸大宣传所言 ,集肤效应并不会改变所有的高频讯号 ,并且不会 造成任何相关动能的损失。正好相反,集肤效应会因传导体的不同成分,在传递高频 讯号时有不连贯的现象。同样地,在陈旧的线束传导体上,集肤效应助长讯号电流在 多条线束上的交互跳动,对于声音造成刺耳的记号。2 邻近效应图2

4、.1表示了邻近效应的产生过程。A、B两导体流过相同方向的电流IA和IB,当电流按 图中箭头方向突增时,导体A产生的突变磁通A-B在导体B中产生涡流,使其下表面的 电流增大,上表面的电流减少。同样导体B产生的突变磁通B-A在导体A中产生涡流, 使其上表面的电流增大,下表面的电流减少。这个现象就是导体之间的邻近效应。当流过导体的电流相同,导体之间的距离一定时,如果导体之间的相对面积不同,邻近 效应使得导体有效截面面积不同。研究表明:导体的相对面积越大则导体有效截面越大,损 耗相对较小。JPa-brpB-A耦流导怵A导畑图 2.1. 临近效应产生过程示意图图 2.2. 临近效应示意图图 2.3. 一

5、轴对称模型在频率为 20KHz 时电流密度的分布图临近效应与集肤效应是共存的。集肤效应是电流主要集中在导体表面附近,但是沿着导 体圆周的电流分布还是均匀的。如果另一根载有反向交流电流的圆柱导体与其相邻,其结果 使电流不再对称地分布在导体中,而是比较集中在两导体相对的内侧,形成这种分布的原因 可以从电磁场的观点来理解。电源能量主要通过两线之间的空间以电磁波的形式传送给负 载,导线内部的电流密度分布与空间的电磁波分布密切相关,两线相对内侧处电磁波能量密 度大,传入导线的功率大,故电流密度也较大。如果两导线载有相同方向的交变电流,则情 况相反,在两线相对外侧处的电流密度大。3.导体的边缘效应Dowa

6、ll 提出了计算两绕组变压器绕组交流电阻的方法,此方法先将圆导体转化为方形,并作如下假设: 磁场被假定为一维变量,垂直于导体的分量被忽略,并且总磁场强度在每个导体层中为常 量; 绕组被假定为无限长片状导体的一部分,电流密度沿每层导体截面是常数,导体边缘效应 被忽略; 假定磁芯不存在,线圈在整个磁芯宽度方向上均匀分布; 流过绕组的电压和电流均为正弦波,且线圈无开路。后来的研究者们对此方法提出了一些修正。事实上,导体的边缘效应对磁性元件的损耗和漏 感等有较大的影响。绕组的边缘效应会造成由上述假定所限定的一维绕组损耗计算方法所不 能计算的额外损耗。在不同的工作频率下,绕组之间距离不同,造成的交流电阻

7、和漏感不同, 对于一个指定的频率,存在一个最佳的距离使得绕组交流电阻最小;绕组在磁芯窗口中的位 置对绕组参数也有一定的影响;对于高频变压器,原副边绕组的宽度与绕组损耗和能量的存 储也有很大关系:原副边绕组宽度相同时高频变压器可以获得最小的交流电阻和漏感。有关 学者对这种边缘效应进行了详细的研究,使用二维有限元仿真软件,通过对磁场分布和电流 分布进行分析证明了绕组边缘效应对绕组损耗和漏感的影响。因为有限元分析方法对每个设计方案都要单独求解,因此不能提供一般的结论,SoftSwitching Technologies Corporation 的 Nasser H.Kutkut 对传统的一维绕组损耗

8、计算方法进行 了改进,通过在 Dowell 方法分析结果上添加一些修正因数,则可以将二维的边缘效应考虑 进去。使用二维有限元的方法分析绕组的边缘效应损耗,通过研究几何因素如绕组间距、位 置等对磁场分布和电流分布的影响,进而得出几何因素对绕组损耗的影响,得出了一系列的 绕组优化原则。在大电流时,铜带的使用是比较常见的,但是铜带使用时会出现较明显的绕组边缘效应,电流变成了不均匀分布的形式,可以想象二维场效应是比较严重的。在分析铜带绕组的二维边缘效应之前,先做一定的假设: 假定电流集中在一个趋肤深度内。当铜带导体的厚度是当前工作频率对应的趋肤深度的若 干倍时,这一点是成立的。 假定电流密度沿着铜带导

9、体表面是Js,则铜带厚度方向上电流密度的分布满足式(3.1):3.1)n表示铜带从表面深入到内部的深度,k为结构系数。 在高频的情况下,趋肤深度非常小,导体表面的磁场接近线性磁场,这种情况下,导体表面 的电流分布类似于在标量电势作用下的导体表面的静电荷分布,方形铜带问题的分析就可以 简化为与之等截面积的椭圆状铜带导体的分析,方形铜带导体和椭圆形铜带导体的截面关系 如图 3.1 所示。图 3.1.铜带的椭圆近似模型分析使用这种假设条件,则可以得到沿着铜带的电流密度分布为式(3.2)所示:S 1 2 (32)由式(3.2)可以看出,当x=b或者x=-b时电流密度Js最大。即铜带在导体的边缘处达到最

10、大值,从磁场分布的角度来看,在铜带导体的边缘处由于边缘 效应,磁场垂直于导体的分量会很大,这样就导致了这个磁场分量对铜带导体的切割,铜带 绕组的涡流损耗会增大,同时导体边缘处的强磁场会导致电流密度的显著增大。电流分布是 在边缘处很强,中间较为平均,由于边缘处受强磁场的吸引,显示高的电流密度,这种电流 密度在端部的重新分布增加了导体的交流电阻,其结果比一维分析的要大很多。通过优化铜 带边缘的场分布,可以减小边缘处的磁场垂直分量,这样可以改善铜带导体电流密度的分布, 减小绕组高频损耗。具体方法是在铜带边缘处使用高磁导率磁芯,减小磁路磁阻,这样就会 降低了铜带端部的磁场,减小了端部的电流分布,绕组损

11、耗将会降低,但是需要特殊的磁芯 工艺。4.绕组涡流损耗对于高频变压器,因为存在原边和副边绕组,所以可以通过绕组交错布置的方式小绕组的漏 感和涡流损耗。在绕组交错布置时,因为原、副边绕组的磁势是相反的,此会存在一个去磁 效应,磁芯窗口中的磁势会有一定的减小,漏磁场和高频时漏磁场成的导体涡流损耗也会比 较小。对于高频电感而言,它只有一个绕组,磁路中的气隙磁势和绕组的磁势平衡,在窗口中没有 其它绕组的磁势可以和电感绕组的磁势相平衡产生去磁效应,因此电感磁芯窗口中的磁势较 大,磁场较强。通过分析可以发现,电感中的磁通主要分为以下几个部分: 主磁路磁通。这部分磁通是流通在电感磁芯中的磁通,它不会在磁芯窗

12、口中出现,因此它 不会切割导体,也不会产生导体损耗。 气隙边缘磁通,即扩散磁通。这部分磁通是由于气隙磁势而产生,它在磁芯窗口中出现, 在高频时会切割窗口中的导体造成涡流损耗。 旁路磁通。这部分磁通不是由于气隙磁势而产生,而是由于相邻磁芯柱之间的磁势差而产 生,当气隙较小时,旁路磁通在窗口磁通中占较大比例。4.1旁路磁通损耗旁路磁通通过磁芯窗口跨过相邻的磁芯柱,在绕组上产生大量的涡流和损耗,气隙的边缘磁 通是由于跨过气隙的磁势造成的,而旁路磁通是由于相邻磁芯柱间的磁势差异造成,沿着磁 芯柱窗口的磁势分布取决于载流绕组和气隙的位置。沿着磁芯柱磁势随着载流绕组安匝增大 而增加,随着跨过气隙而降低。通

13、过做出如下一维假设,可以对旁路磁通作一定的分析。1. 假定磁芯磁导率是无穷的,磁场进入磁芯窗口是垂直于磁芯表面的。2. 绕组添满整个磁芯窗口宽度,绕组边缘效应很小,可忽略。3. 对圆导体进行一维等效,变成一片方导体,使用等效厚度和等效电导率,磁场在磁芯窗口 中平行于导体表面,属一维分布。4. 气隙可认为很小,边缘磁通很小,对旁路磁通影响很小,然而无论气隙多么小,边缘磁通都存在,因为气隙磁势是存在的。A.0w第m展戟帯4.1.2)图 4.1.1 Dowell 绕组损耗分析模型 如图4.1.1所示为磁芯窗口中的第m层铜带绕组,其上、下表面的磁场强度分别Hml和Hm2,则这层铜带绕组的电流分布和绕组

14、损耗可以通过Dowell方程得出,如式(4.1.1)所示:;(刃=k H世刃H灵 畑血比 心绍期4.1.1)fsinh(肛九)所示:式中k=,f是工作频率,o eq是铜带的等效电导率,p是绕组的磁导率,Aeq和W是等效铜带的厚度和宽度。总的旁路磁通绕组损耗可以通过求和得出,如式(2.1.3)4.1.3)通过用一维的方式分析旁路磁通可知:绕组的电流密度与沿导体的磁场强度密切相关,不同的气隙位置导致不同的窗口磁势,因此沿导体的磁场强度会有较大的不同,沿导体的电流密 度分布也会有较大的不同。旁路磁通的大小是与磁芯高度方向上的平均磁压降密切相关的。当气隙处于中间与两端时,磁压分布如下图所示:图 4.1

15、.2EI 型( a )和 EE ( b )型磁芯电感窗口磁势分布图a中的平均磁压降为IN/2, b为IN/4。假定旁路磁通与底边平行,又由于B=dU*uO/w,可知,a中的磁密必定大于b中的磁密,磁 场方向与线圈垂直。下面是损耗与平均磁压降的关系:图 4.1.3 损耗随平均磁压降变化图由图可看出磁压降越低,损耗越低。由此,如果我们可以将磁压降降得更低,就可得到损耗更低的电感!图 4.1.4 磁压降与气隙位置的关系由于它将气隙交错布置,使磁压降在高度方向上出现二次转折,仅为IN/8。它的损耗比起 气隙居中者可再下降约 50%。因此我们可以知道在电感磁势一定的情况下,EE磁芯窗口中的最大磁势是EI磁芯的 一半。磁芯窗口中的最大磁势的减小,有助于减小旁路磁通,进而旁路磁通造成的导体涡 流损耗也会减小,所以在选择磁芯时应该引起注意,利用交错气隙可以减少磁芯窗口内的 旁路磁通。4.2扩散磁通损耗滤波电感工作时输入的电流波形是一个直流分量叠加一个开关频率的纹波,因此在设计 电感时为了在磁芯中瞬间存储能量,磁路中需要有一个较大的磁势,因此一般都需要添加气 隙。在磁路设计时,因为磁芯(比如铁氧体)和磁绝缘物质(比如空气)之间的磁导率比例系数 大约为10人3,因此磁通在磁路中并非完全

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号