石墨烯拉曼测试解析汇报

上传人:壹****1 文档编号:512642728 上传时间:2022-09-24 格式:DOC 页数:9 大小:345KB
返回 下载 相关 举报
石墨烯拉曼测试解析汇报_第1页
第1页 / 共9页
石墨烯拉曼测试解析汇报_第2页
第2页 / 共9页
石墨烯拉曼测试解析汇报_第3页
第3页 / 共9页
石墨烯拉曼测试解析汇报_第4页
第4页 / 共9页
石墨烯拉曼测试解析汇报_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《石墨烯拉曼测试解析汇报》由会员分享,可在线阅读,更多相关《石墨烯拉曼测试解析汇报(9页珍藏版)》请在金锄头文库上搜索。

1、word3.1 石墨烯AFM测试详解单层石墨烯的厚度为.335,在垂直方向上有约的起伏,且不同工艺制备的石墨烯在形貌上差异较大,层数和结构也有所不同,但无论通过哪种方法得到的最终产物都或多或少混有多层石墨烯片,这会对单层石墨烯的识别产生干扰,如何有效地鉴定石墨烯的层数和结构是获得高质量石墨烯的关键步骤之一。石墨烯的表征主要分为图像类和图谱类图像类以光学显微镜透射电镜TEM扫描电子显微镜、SEM和原子力显微分析AFM为主而图谱类如此以拉曼光谱Raman红外光谱IRX射线光电子能谱、XPS和紫外光谱UV为代表其中TEM、SEM、Raman、AFM和光学显微镜一般用来判断石墨烯的层数而IRX、XPS

2、和UV如此可对石墨烯的结构进展表征,用来监控石墨烯的合成过程。且看“材料+小编为您一一解答。3.1.1 AFM表征图1AFM的工作原理图AFM工作的三种模式关于AFM的原理这里就不多说了,目前常用的AFM工作模式主要有三种:接触模式,轻敲模式以与非接触模式。这三种工作模式各有特点,分别适用于不同的实验需求。石墨烯的原子力表征一般采用轻敲模式TappingMode:敲击模式介于接触模式和非接触模式之间,是一个杂化的概念。悬臂在试样外表上方以其共振频率振荡,针尖仅仅是周期性地短暂地接触/敲击样品外表。这就意味着针尖接触样品时所产生的侧向力被明显地减小了。因此当检测柔嫩的样品时,AFM的敲击模式是最

3、好的选择之一。【材料+】微信平台,内容不错,欢迎关注。一旦AFM开始对样品进展成像扫描,装置随即将有关数据输入系统,如外表粗糙度、平均高度、峰谷峰顶之间的最大距离等,用于物体外表分析。优点:很好的消除了横向力的影响。降低了由吸附液层引起的力,图像分辨率高,适于观测软、易碎、或胶粘性样品,不会损伤其外表。缺点:比ContactModeAFM的扫描速度慢。3.1.2 AFM表征石墨烯原理AFM可用于了解石墨烯细微的形貌和确切的厚度信息,属于扫描探针显微镜,它利用针尖和样品之间的相互作用力传感到微悬臂上,进而由激光反射系统检测悬臂弯曲形变,这样就间接测量了针尖样品间的作用力从而反映出样品外表形貌。因

4、此,表征方法主要表征片层的厚度、外表起伏和台阶等形貌,与层间高度差测量。原子力显微技术是判定是否是石墨烯的最好的表征方法,因为能够直接用它就能观察到石墨烯的外表形貌,同时还能测出此石墨烯的厚薄程度,然后再与单层的石墨烯的厚度进展比照,从而确定是否存在单层石墨烯。做测试,就上e测试网。但是AFM也有缺点,就是它的效率很低。这是因为在石墨烯的外表常会有一些吸附物存在,这会使所测出的石墨烯的厚度会略大于它的实际厚度。石墨烯的结构图和其AFM图像1,2图3.2中a显示的是单层的碳原子进展严密排列而构成的二维的点阵结构;图b显示的是石墨烯的AFM图像,扫描探针显微结构中,AFM可以直接观测到其外表形貌,

5、并测出厚度,但是最大的缺点就是效率低,而且由于外表不纯净,常会有吸附物存在,导致测出的厚度要稍大于实际厚度。3.1.3 AFM表征与图像分析举例3.1.3.1 不同基底对厚度的影响AFMnm要大。做测试,就上e测试网。如HOPG 上单层石墨烯的厚度约为nm,云母外表的单层石墨烯厚度往往在0.51nm左右的叠加层图3.3,这与X德华力层间距是一致的。图SiO2基底上单层石墨烯的AFM高度图。图中比例尺为1m3。图a单层石墨烯在SiO2衬底上的AFM图。b单层石墨烯在云母衬底上的AFM图。c单层石墨烯在云母衬底上、云母衬底、石墨烯片层在SiO2衬底上以与SiO2衬底的高度统计分布图4。对于GO 氧

6、化石墨烯或石墨氧化物和rGO复原的氧化石墨烯,由于其外表含有大量的含氧官能团,AFM下单层的厚度和外表粗糙度都要大于原始石墨烯pristinegraphene,如单层GO的厚度在云母外表上约为nm,而在SiO2外表上为2nm左右。Lui等研究者4发现沉积在基底外表的石墨烯为了维持自身稳定性会在外表形成波纹状的起伏,而当沉积在云母外表时具有最小的外表粗糙度,是最“平的石墨烯图3.4。GO、rGO与Graphene的AFM图区别石墨经过氧化后,层间距会增大到0.77左右。剥离后的氧化石墨烯吸附在云母片等基底上,会增加0.35左右的附加层,所以单层氧化石墨烯在AFM下观测到的厚度一般在0.7-1.2

7、左右。将氧化石墨烯沉积在云母片上,利用蔗糖溶液复原后进展AFM表征,如图3.5所示,图中的高度剖面图Z对应着图中两点Z1、Z2的高度差即石墨烯的厚度,同时假如将直线上测量点选择在石墨烯片层的两端,还可以粗略测量石墨烯片层的横向尺寸distance。石墨烯的AFM图像和高度剖面图53.1.3.2 不同复原方法得到的GO、rGO的AFM区别Si等6进展了硼氢化钠为复原剂制备RGO的研究。通过观察AFM图像,他们发现GO的横向尺寸为几个微米,厚度为1nm,但是经过化学复原为RGO后,nm。实验过程中的超声处理可能会使GO引入一些小孔状的缺陷,这也是AFM显示RGO厚度增加到10m的原因。Chen等7

8、还采用微波复原GOnm的GO,微波复原的产物GNSnm,接近于GNSnm。而当GO边缘有环氧基、羟基、羧基存在时,GNS片层的厚度就会增加。说明微波处理后,GO被复原为单层GNS。这种方法可以制备微米尺寸的GNS。Williams等8用UV处理GO得到RGO。AFM图显示,GO的厚度为1.7nm,而经UVnm,横向尺寸为几百纳米到几个微米。做测试,就上e测试网。RGO比GNS理论厚度要大得多,这主要归因于RGO纳米片边缘的一些溶剂分子和剩余氧的存在。3.1.4 AFM表征石墨烯的优缺点由于单层石墨烯理论厚度很小,在扫描电镜中很难观察到。原子力显微镜是表征石墨烯片层结构的最有力、最直接有效的工具

9、。它可以清晰的反映出石墨烯的横向尺寸、面积和厚度等方面的信息,但一般只能用来分辨单层或双层的石墨烯。原子力显微镜可以表征单层石墨烯,但也存在缺点:耗时且在表征过程中容易损坏样品;此外,由于C键之间的相互作用,表征误差达0.5nm甚至更大,这远大于单层石墨烯的厚度,使得表征精度大大降低。由于石墨烯厚度仅为1个至几个原子层,晶体的缺陷和外表吸附物质的不同,都会引起表征结果的不同。在实际研究中,往往需要根据需要选取适宜的表征方法把得到的结果互相比拟,互相印证才能得到关于石墨烯的准确信息。3.2 石墨烯拉曼光谱测试详解就石墨烯的研究来说,确定其层数以与量化无序性是至关重要的。激光显微拉曼光谱恰好就是表

10、征上述两种性能的标准理想分析工具。通过测量石墨烯的拉曼光谱我们可以判断石墨烯的层数、堆垛方式、缺陷多少、边缘结构、X力和掺杂状态等结构和性质特征。此外,在理解石墨烯的电子声子行为中,拉曼光谱也发挥了巨大作用。3.2.1 石墨烯的典型拉曼光谱图石墨烯的拉曼光谱由假如干峰组成,主要为G峰,D峰以与G峰。G峰是石墨烯的主要特征峰,是由sp2碳原子的面内振动引起的,它出现在1580cm-1附近,该峰能有效反映石墨烯的层数,但极易受应力影响。D峰通常被认为是石墨烯的无序振动峰,该峰出现的具体位置与激光波长有关,它是由于晶格振动离开布里渊区中心引起的,用于表征石墨烯样品中的结构缺陷或边缘。G1为514.5

11、nm激光激发下单层石墨烯的典型拉曼光谱图。其对应的特征峰分别位于1582cm-1附近的G峰和位于2700cm-1左右的G峰,如果石墨烯的边缘较多或者含有缺陷,还会出现位于1350cm-1左右的D峰,以与位于1620cm-1附近的D峰。图3.6 514nm激光激发下单层石墨烯的典型拉曼光谱图1当然对于sp2碳材料,除了典型的拉曼G峰,D峰以与G峰,还有一些其它的二阶拉曼散射峰,大量的研究明确石墨烯含有一些二阶的和频与倍频拉曼峰,这些拉曼信号由于其强度较弱而常常被忽略。如果对这些弱信号的拉曼光谱进展分析,也可以很好地对石墨烯中的电子-电子、电子-声子相互作用与其拉曼散射过程进展系统的研究。3.2.

12、2 石墨烯拉曼光谱与层数的关系1,2为532nm激光激发下,SiO2300nm/Si基底上14层石墨烯的典型拉曼光谱图,由图可以看出,单层石墨烯的G峰锋利而对称,并具有完美的单洛伦兹Lorentzien峰型。此外,单层石墨烯的G峰强度大于G峰,且随着层数的增加,G峰的半峰宽FWHM:full width at half maximum逐渐增大且向高波数位移蓝移。双层石墨烯的G峰可以劈裂成四个洛伦兹峰,其中半峰宽约为24cm-1。这是由于双层石墨烯的电子能带结构发生分裂,导带和价带均由两支抛物线组成,因此存在着四种可能的双共振散射过程即G峰可以拟合成四个洛伦兹峰。同样地,三层石墨烯的G峰可以用六

13、个洛伦兹峰来拟合。此外,不同层数的石墨烯的拉曼光谱除了G3所示,这是由于在多层石墨烯中会有更多的碳原子被检测到。综上所述,14层石墨烯的G峰强度有所不同,且G峰也有其各自的特征峰型以与不同的分峰方法,因此,G峰强度和G峰的峰型常被用来作为石墨烯层数的判断依据。但是当石墨烯层数增加到4层以上时,双共振过程增强,G峰也可以用两个洛伦兹峰来拟合,拉曼谱图形状越接近石墨。所以,利用拉曼光谱用来测定少层石墨烯的层数具有一定的优越性清楚、高效、无破坏性,其给出的是石墨烯的本征信息,而不依赖于所用的基底。图3.7 a1,2,3,4层石墨烯的拉曼光谱;b14层石墨烯的拉曼G峰1,2 3揭示了110层石墨烯的拉

14、曼光1550cm-1-1640cm-1,右上角插入的图为石墨烯材料在60 Torr的NO2下热暴露前后的拉曼光谱图。由图可知,对于单层石墨烯和双层石墨烯,G峰分别位于1614 cm-1和1608 cm-1附近。而三层石墨烯的G峰被劈裂成两个峰,分别位于1601.5 cm-1和1584 cm-1附近,后者标记为G-低强度峰。随着石墨烯层数超过3层时,G峰出现在1582 cm-1和1598 cm-1处,低强度峰的峰强也随着层数的增加而增加。由此可以确认NO2在石墨烯最表层和最里层的吸附效果。110层石墨烯的拉曼光谱33.2.3 含有缺陷石墨烯的拉曼光谱分析众所周知,石墨烯是一种零带隙的二维原子晶体

15、材料,为了适应其快速应用,人们开展了一系列方法来打开石墨烯的带隙,例如:打孔,用硼或氮掺杂和化学修饰等,这样就会给石墨烯引入缺陷,从而对其电学性能和器件性能有很大的影响。拉曼光谱在表征石墨烯材料的缺陷方面具有独特的优势,带有缺陷的石墨烯在1350cm-1附近会有拉曼D峰,一般用D峰与G峰的强度比ID/IG以与G峰的半峰宽FWHM来表征石墨烯中的缺陷密度4, 54揭示了ID/IG随着37Cl+辐照能量增加的变化曲线图与对应的辐照能量的HRTEM图。ID/IG的最大值出现在37Cl+辐照能量约为1014ions/cm2处。研究明确,缺陷密度正比于ID/IG,因此此时的缺陷是最多的。进一步增加辐照能量1016inos/cm2,样品已经完全非晶化了HRTEM。拉曼光谱依然有效,这是因为样品仍保存了sp2结构的相。此外,含有缺陷的石墨烯还会出现位于1620cm-1附近的D峰。ID/ID,与石墨烯外表缺陷的类型密切相关5。综上所述,拉曼光谱是一种判断石墨烯缺陷类型和缺陷密度的非常有效的手段。图3.9 ID/IG随着37Cl+辐照能量增加的变化曲线图

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 资格认证/考试 > 自考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号