污泥的超声波预处理

上传人:M****1 文档编号:511824823 上传时间:2022-12-05 格式:DOC 页数:21 大小:400KB
返回 下载 相关 举报
污泥的超声波预处理_第1页
第1页 / 共21页
污泥的超声波预处理_第2页
第2页 / 共21页
污泥的超声波预处理_第3页
第3页 / 共21页
污泥的超声波预处理_第4页
第4页 / 共21页
污泥的超声波预处理_第5页
第5页 / 共21页
点击查看更多>>
资源描述

《污泥的超声波预处理》由会员分享,可在线阅读,更多相关《污泥的超声波预处理(21页珍藏版)》请在金锄头文库上搜索。

1、污泥的超声波预处理摘要超声波处理是一种新兴的、有效的用以加强污泥的可生化性的机械预处理方法,并且对于所有污水处理设施中污泥的处理和处置都十分有效果。超声波处理是通过扰乱污泥原有的物理、化学和生理性质来提高其可消化能力。崩解的程度取决于声处理的参数以及污泥的特性,因此,最佳参数的评价因声处理设备和受处理污泥的不同而有所区别。超声波处理的试验设施表明,生物气体的产量提高了50%,此外能量衡算显示获得的净能量与超声波装置的电耗的平均比率是2.5。这篇综述总结了超声波处理污泥的优点、超声波处理参数对处理效果的作用、污泥特性对于污泥裂解的影响及由此带来的厌氧消化器中生物气体产量的提高。由于许多研究者对于

2、计量单位的表达的不确定以及数据的不可利用,对这些研究结果进行比较是非常复杂的。为了评价污泥处理处置的最经济可行和环境可行的预处理方法,将超声波处理和其他预处理的选择进行比较是很有必要的。超声波处理的最佳参数随污泥特性的不同而变化。1. 引言21世纪工业化与城市化的快速发展导致了污水处理系统的污泥产量达到了不可管理的数量。污泥的管理是污水处理系统的主要问题,它占了系统运行总费用的60%而且关于污泥处置的法律法规变得越来越严格。随着全球变暖和气候变化的加剧,来自废弃物处理领域的温室气体排放获得了更多的关注。在加拿大,废弃物处理领域的温室气体排放从1990年到2006年提高了15%。加拿大现有的污水

3、处理系统产生的干污泥量是670,000 Mg/y,并预计产率在将来还会继续提高。焚化、海洋投弃、土地利用和堆肥是过去数十年来常见的污泥处置方法。由于经济上的制约和对环境的负面影响,这些常见的污泥处置方法已经不再可靠。鉴于环境上和经济上的制约,我们有需要寻找可持续的经济可行的技术来进行污泥的处理和处置。随着在污泥处理方面的广泛研究,许多研究者提出污泥的厌氧消化是有效的可持续的污泥处理技术。厌氧消化技术的优点是非常巨大的,其中包括物料的减少、臭气的去除、减少致病菌、更少的能耗以及更显著的由甲烷而带来的能量回收。污泥的厌氧消化是在没有氧元素存在的情况下,将可降解有机物转变成甲烷和二氧化碳的一系列复杂

4、的微生物化学过程。从基质到生物气体的转变途径由三种不同类型细菌的作用将其分为水解、酸化、乙酸化和甲烷化四个阶段。第一类细菌包括水解细菌和酸化细菌,它们将复杂的基质(碳水化合物、脂类和蛋白质等)水解成溶解性的单体(单糖、脂肪酸和氨基酸等)继而水解为CO2 、H2、有机酸和酒精。第二类代谢细菌是能够将简单的单体和脂肪酸转变为乙酸,H2和CO2的产氢产酸菌。第三类是产甲烷细菌,它们能利用CO2 、H2和乙酸来生产CH4和CO2。这个从基质到CH4和CO2的完整的微生物消化过程是十分缓慢的,需要很长的停留时间。特别地,细胞内生物聚合物的溶解和向低分子量固体可降解有机质的转化(如污泥的水解)是一个速度限

5、制步骤。传统的厌氧消化过程的四个阶段如图1所示。传统厌氧消化处理较低的微生物转化率导致了反应器中很高的水力停留时间和较大的消化器容积,这也是传统厌氧消化技术的关键障碍所在。可生物降解有机物质的不可利用和较低的消化速率常数使得污泥的预处理很有必要。污泥的预处理可以使细菌的细胞壁破裂以促进细胞内物质向液相的释放,以此提高污泥的可生物降解性,并通过降低停留时间和提高生物气体产量来加强厌氧消化的效率。随着各种污泥预处理技术的发展,其中包括热力学的、化学的、机械的、生物性的、物理的和各种结合技术如物理化学的、生物物化的、机械化学的和热力学化学等方面,污泥的可生物降解性可以通过一定的方式得到加强。然而,经

6、济上的制约限制了这些技术在实践试验上的应用。为了建立最佳的经济可行的预处理技术以提高污泥的可消化性,全世界的研究者展开了广泛的研究。超声波处理是一种新兴的有前景的机械式污泥裂解技术。它有许多内在的优点如显著的污泥裂解率( 95%),生物可降解性的提高,生物固体质量的提升,生物气体中甲烷量的提高,无需添加化学剂,更少的停留时间以及污泥量的减少。此外,单位超声波能量(1kW)的消耗能产生7kW的能量。以甲烷产量提高效果衡量的预处理技术的效率的顺序是,超声波分解 自动窑热处理 水浴热处理 冷冻。本文展现了关于超声波预处理污泥以加强厌氧消化的广泛性的综述,并比较了实验室试验和实践规模试验的结果。2.

7、超声波处理在过去,声波被应用在反潜艇的战争中,导致了许多鱼类被声波所杀死,人们从中想到了用超声波的方法来破坏微生物细胞。Hughes与Nyborg16还有Alliger17研究了超声波作用于微生物细胞的机理并发现,短暂地暴露在超声波中可以使细胞壁变薄从而导致细胞质向外释放。超声波是频率高于20kHz的周期性声波。不同频率的超声波的应用如图2所示。根据频率的不同,可将其分为三个区域:功率超声(20100kHz),高频超声(100kHz1MHz)和超声诊断(1500MHz)。超声波在医学上的应用最早出现在二战中,超声波被用于代替人手对骨折的病人进行按摩18。随着技术的进步,超声波(20Hz)被应用

8、于各种领域。频率在20kHz到100kHz之间的超声波被应用于要求发生各种化学、物理变化的重要的化学系统中。在动物导航与通行,固体内部裂痕的探测,水底定位,胎儿扫描,骨盆畸形检测,良性与恶性肿瘤治疗等方面,1MHz到10MHz频率范围的超声波均有广泛的应用。通过超声波处理使微生物细胞破裂可获得细胞内的物质22-24。Hogan等25还对超声波应用于市政污泥的裂解进行了进一步的评估。在20Hz与20kHz之间的声波是可以听得见的,而听觉随着个人和年龄的不同而有所差别。低于20Hz到0.001Hz的声波用于地震学26,医学和追踪地壳中岩石和石油的形成。2.1 超声波引发的空洞现象超声波技术的基本目

9、的是破坏微生物细胞的细胞壁,使细胞内的物质能够在厌氧消化中不断地被利用以降解为CH4和CO2。当超声波在污泥相中传播时,能产生压力和拉力,压力使微粒聚集而拉力则使离子分离,由于负压的持续存在在拉力区域会出现微小的气泡(即空穴)。这些小气泡不断变大达到了不稳定的尺寸便会破裂,并产生冲击波(在几微秒内达到5000和500个大气压)。这些气泡产生到破裂的过程就是所谓的空穴现象。空穴气泡的产生和破裂如图3所示。2.2 影响空穴现象的因素污泥的裂解效率主要取决于空穴现象,而影响空穴现象的因素可见表1。2.3 超声波产生与裂解机理超声波是靠磁致伸缩和压电两种技术产生的。在磁致伸缩技术中,电能通过连接着震动

10、片的磁线圈转化成机械能(震动)。在压电技术中,电能通过连接着震动片的压电晶体转变成高频率的电动能。将电能或机械能转化为声波的转换器是一个能增强震动的机械放大器。喇叭将超声波传递到液体中,所以转换器、扩充器和喇叭是超声波设备的主要部件。转换器、扩充器和喇叭在节点处被夹紧并结合在一起,在转换器和扩充器上是最常见的结合点。此外,喇叭常被设计成半个波长的长度,不过根据实际应用也有设计成一个波长的。超声波的强度可以通过调节输入电压的方式进行控制,这是超声波处理中非常重要的一项参数,它能决定震动扩增的大小。声能转化为热能的转化效率可以通过式(1)(3)计算。2.3.1 污泥的破解污泥破解的输入功率有许多表

11、达方式,(a)破解度,(b)超声波剂量,(c)超声波密度和(d)超声波强度。各表达式见表2。我们所推测的污泥的超声波破解机理是,(a)水的机械剪切力;(b)在超声辐射下产生的OH、H、N和O等自由基的氧化作用;(c)污泥中挥发性疏水物质的热分解;(d)活性污泥破解过程中温度的升高。超声处理中产生的空穴导致了大量微气泡的破裂,使得气泡周围的液相中产生了巨大的机械剪切力。气泡破裂所产生的高温使水分解为性质活跃的氢离子和氢氧自由基,在低温区域这些粒子会重新结合成过氧化氢和氢气。由于挥发性疏水物质在污泥中的含量非常低,因此其作用也常可忽略。考虑到温度对于溶解的影响,污泥在高温下的溶解速度非常缓慢。因此

12、,我们可以认为,污泥的破解主要通过两个途径实现,水的机械剪切力和氢氧自由基的氧化作用。Wang49等人对氢氧自由基和水力机械剪切力对污泥破解的影响进行了评价。在超声处理之前加入NaHCO3 来测定氢氧自由基的影响。NaHCO3的加入能使污泥中氢氧离子的氧化效率有略微的提升,但也导致了污泥pH值的升高。这表明了氢氧自由基对污泥溶解的促进作用是微弱的。因此,污泥的破解主要是依靠空穴气泡产生的机械剪切力实现的。此过程遵从于一阶反应式。总的反应常数u可以通过(4)式计算。2.4 超声波破解的评价超声波能使微生物絮体分散并将大颗粒的有机物分解为更小尺度的颗粒。高压力波产生的剪切力能破坏细胞壁以使胞内物质

13、释放到液相中,这个过程使得污泥的物理、化学、生物等性质在超声波预处理中发生了改变。因此,污泥的破解程度是根据污泥的物理、化学、生物等性质的变化确定的。2.4.1 物理性质变化污泥的物理性质参数对厌氧消化有重要的影响,所以声处理后物理参数的测定对于厌氧消化的操作至关重要。此外,物理性质指标是污泥破解效率的评定标准。判定超声破解程度的技术主要有颗粒粒径分析,污泥沉降性测定,物质组成测定,显微镜成像,浊度测定以及污泥的脱水性能。颗粒粒径分析根据颗粒的大小有不同的方法,主要有筛分法、沉降法、电臭氧感应法、显微镜法和激光衍射法等。超声波能将污泥颗粒破解至非常小的尺寸,而激光衍射法常被用来分析颗粒粒径。污

14、泥的浊度随着声处理参数的升高而变化,并通过浊度仪测量,以NTU计量。污泥的脱水能力根据其毛细管上升时间和污泥比阻测定。2.4.1.1 颗粒尺寸颗粒的溶解率是由污水中颗粒的大小尺寸确定的,颗粒的溶解率影响着消化过程中甲烷的产量。超生预处理能显著地减小污泥中颗粒的粒度,而影响其效率的因素有处理时间,声波密度,声波功率,污泥体积和污泥性质等。随着处理时间的延长颗粒的粒径逐渐减小,如经过0.49min和1.6min的声处理颗粒大小从165m分别减小为135m和85m。相似的,Biggs和Lant68发现经过5分钟的声处理微粒的粒径从125mm减小到10mm。Gonze等一开始也观察到相似的减小趋势,但

15、他们发现经声处理超过10分钟后,颗粒大小随着处理时间的推移而逐渐变大。在高处理时间下颗粒大小的增大是由颗粒的重絮凝造成的。随着处理时间的增加,由于细胞溶解而释放的胞内聚合物逐渐增多,这些物质对于絮凝十分有利。这些生物聚合物像胶水一样将生物絮体粘合在一起,并形成羟基和羧基基团。微粒平均尺寸的减小作用也会随着声波强度的增大而增强。在强度为0.52W/mL和0.33W/mL的条件下,颗粒平均尺寸从51m分别减小为15m和19m。低功率水平对絮体尺寸的减小没有影响,而提高功率水平,絮体尺寸的减小作用会随着声波强度和处理时间的增大而增强。显微镜检测表明,经过60分钟的声处理,絮体的结构完整性遭到破坏,此

16、后不管如何提高处理时间和功率水平都无法破解絮体。由此可见污泥的破解存在着一个最佳的功率水平和处理时间。Chu等71研究了声处理对普通污泥和絮凝化污泥的作用效果。经过声处理,絮凝化污泥的颗粒减小效果较之普通污泥强50%。声处理会使污泥的平均表面电荷减少。声处理会将絮体颗粒分割成许多带负电的小粒子。例如,通过絮凝作用污泥的zeta电位从-14mV提高到18mV,接着声处理又使zeta电位降低至+4mV。Mao等12研究了声处理对初沉污泥和二沉池污泥颗粒粒径减小的效果。经过20分钟的处理,二沉池污泥粒径减小了85%而初沉污泥减小了71%,这是由于二沉池污泥含有更多的生物质,初沉污泥含有的可降解性细胞物质更少。提高声波密度同样可以提高破解效率。在高声波密度下更多的颗粒被破解(4W/mL时为73%,2W/mL时为60%)。Bougrier等47研究了

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号