《塑料成型模具设计》习题解(修改)

上传人:新** 文档编号:511720452 上传时间:2023-11-19 格式:DOC 页数:14 大小:287.50KB
返回 下载 相关 举报
《塑料成型模具设计》习题解(修改)_第1页
第1页 / 共14页
《塑料成型模具设计》习题解(修改)_第2页
第2页 / 共14页
《塑料成型模具设计》习题解(修改)_第3页
第3页 / 共14页
《塑料成型模具设计》习题解(修改)_第4页
第4页 / 共14页
《塑料成型模具设计》习题解(修改)_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《《塑料成型模具设计》习题解(修改)》由会员分享,可在线阅读,更多相关《《塑料成型模具设计》习题解(修改)(14页珍藏版)》请在金锄头文库上搜索。

1、塑料成型模具设计习题解陈吉平编目 录第一章 概论第二章 塑料成型理论基础第三章 塑料制件的设计原则第四章 注射成型工艺第五章 注射模概述第六章 注射模浇注系统第七章 注射模成型零部件设计第八章 注射模的导向及脱模机构设计第九章 侧向分型与抽芯机构设计第十章 注射模温度调节系统第十一章 注射模的设计步骤及材料选用第十二章 注射模新技术的应用第一章 概 论1、 什么是合成树脂?什么是塑料?为什么塑料能得到日益广泛的应用?答:合成树脂是人们模仿天然树脂的成分,并克服了产量低、性能不理想的缺点,用化学方法人工制取的各种树脂。塑料是以高分子聚合物为主要成分,并在加工为制品的某阶段可流动成型的材料。塑料具

2、有特殊的物理力学性能和化学稳定性能,以及优良的成型加工性能,在加热和压力下,利用不同的成型方法几乎可将塑料制成任何形状的制品。同时,塑料原料来源广泛,价格低廉,所以,随着塑料工业的迅速发展,塑料得到了日益广泛的应用。2、 什么是热塑性塑料和热固性塑料?两者在本质上有何区别?答:热塑性塑料,主要由聚合树脂制成。其特点是受热后软化或熔融,此时可成型加工,冷却后固化,再加热仍可软化。热固性塑料,大多数是以缩聚树脂为主,加入各种添加剂制成的。其特点:开始受热时也可以软化或熔融,但是一旦固化成型就不会再软化。此时,即使加热到接近分解的温度也无法软化,且也不会溶解在溶剂中。两者本质上的区别在于分子结构的不

3、同:热塑性塑料的分子结构呈链状或树枝状,为线性聚合物。这些分子通常互相缠绕但并不连结在一起,所以受热后具有可塑性;热固性塑料加热开始时也具有链状或树枝状结构,但在受热后这些链状或树枝状分子逐渐结合成网状结构(交联反应),成为既不熔化又不熔解的体型聚合物。分子的链与链之间产生了化合反应,当再次加热时这类塑料便不能软化。 3、 试述热塑性塑料的状态与加工的关系?答:随着加工温度的逐渐升高,热塑性塑料将经历玻璃态、高弹态、黏流态直至分解。不同状态其性能不同,决定了对加工的适应性。g以下玻璃态,坚硬的固体。E高、小,不宜大变形加工,可车、铣、刨、钻等机械加工。gf高弹态,橡皮状弹性体。E显著减小,大大

4、增强。a、无定形塑料在高弹态靠近聚f一侧,材料的黏性很大,某些塑料可进行真空、压力、压延和弯曲成型等。形变是可逆的,制品温度迅速冷却到g才能得到符合形状尺寸要求的制品。b、结晶形塑料,外力大于材料的屈服点时,可在g至m内进行薄膜或纤维的拉伸。f(熔点温度m)开始,塑料呈黏流态(为熔体)。在f以上不高的温度范围内压延、挤出和吹塑成型等。在f以上较高的温度下,E降低到最低值,较小的外力就能引起熔体宏观流动。此时形变主要是不可逆的黏性变形,塑料在冷却后将形变永久保持下去。在这个温度范围内常进行熔融纺丝、注射、挤出和吹塑等加工。但,过高的温度容易引起制品产生溢料、翘曲等弊病,当温度高到分解温度d会导致

5、塑料分解,会降低制品的物理、力学性能,引起制品外观不良。4、 热塑性塑料的主要成型方法有哪些?热固性塑料的主要成型方法有哪些?答:热塑性塑料的主要成型方法:注塑、挤塑、吹塑、固相成型;热固性塑料的主要成型方法:压缩、压注成型,有时也用注塑成型。第二章 塑料成型理论基础1 什么是牛顿流动定律?牛顿流体?答:牛顿流动定律:牛顿流体:流体以切变方式流动,切应力与剪切速率间呈线性关系。2 什么是非牛顿流体?什么是假塑性流体?与a本质有何不同? 答:非牛顿流体:流体以切变方式流动,切应力与剪切速率间呈非线性关系。假塑性流体:假塑性流体是非牛顿流体中最普遍、最常见的一种,近似服从幂律流动规律,且n1。为牛

6、顿黏度,是牛顿流体本身所固有的性质,与流体的分子结构及流体温度有关,其值大小表征牛顿流体抵抗力引起流动变形的能力;a为表观黏度,表征非牛顿流体在外力作用下抵抗其变形的能力,除与流体本身性质、温度有关之外,还受剪切速率影响,即外力大小及作用的时间也能改变流体的黏度。3描述假塑性流体的公式中,K、n的意义? 答:对于某一种假塑性流体而言,K、n均为常数。K(稠度)值愈高,流体黏度愈大;n(非牛指数,小于1)离整数1愈远,流体的非牛顿性愈强。4.在宽广的剪切速率范围内,聚合物熔体的与之间的关系会出现怎样的变化?答:聚合物熔体在低剪切速率(=1102s1)作用下呈现牛顿性质,为零切牛顿黏度(o),在此

7、区域不随变化;熔体在高剪切速率(106s1)作用下也呈现牛顿性质,黏度为极限牛顿黏度(),在此区域也不随变化;熔体在中等剪切速率(102106 s1)作用下呈非牛顿性质,在此区域随的增大呈幂律规律减小。5.聚合物熔体的黏度随剪切速率的变化对塑料成型加工有何指导意义?答:大多数热塑性聚合物熔体都近似具有假塑性液体的流变学性质,熔体的表观黏度随剪切速率增大呈幂律规律减小。但在较低和较高的剪切速率范围内,黏度的变化梯度(即对剪切速率的敏感性)不同。在较低的剪切速率区域,发生任何微小的变化都会使黏度出现很大的波动,这会给注射控制造成极大困难,即引起工艺条件不稳定、充模料流不稳定、制件密度不均、残余应力

8、过大、收缩不均匀等问题;而在较高的剪切速率区域,改变剪切速率,黏度变化很小,不能有效地改善流动性能。因此,在塑料成型加工中应根据流变曲线选择对黏度影响既不太大也不太小的剪切速率进行操作,保证聚合物熔体不致因黏度过大而影响流动成型,同时也不会因黏度过小而影响制品的成型质量。6.牛顿与非牛顿流体在圆形管道、狭缝形管道中的切应力、剪切速率和体积流率的表达式。答:在圆形管道中牛顿与非牛顿流体的切应力 任一半径处 =rp/2L 管壁处 R=Rp/2L牛顿流体剪切速率任一半径处 管壁处 非牛顿流体剪切速率任一半径处 管壁处 牛顿流体体积流率 ( )非牛顿流体体积流率 ()在平行板狭缝管道中牛顿与非牛顿流体

9、的切应力任一液层处 h=hp/L 上、下壁面处 牛顿流体剪切速率任一液层处 上、下壁面处 非牛顿流体剪切速率任一液层处 上、下壁面处 牛顿流体体积流率 非牛顿流体体积流率7.一种聚合物熔体在5MPa压力降作用下通过直径2mm、长12mm的等截面圆形管道时,测得的体积流率为0072cm3s。若该聚合物熔体的流变行为同于牛顿流体,求管壁处的最大切应力、剪切速率和牛顿黏度。解: 最大切应力 R=Rp/2L=110-35106/(21210-3105(Pa)最大剪切速率 =40.07210-6/(3.14110-12)=9.17104 (s-1)牛顿黏度 据 有=110-35106/(21210-39

10、.17104 (Pa.s)答:最大切应力、最大105Pa、9.17104 s-1。8.一聚合物熔体以1 MPa的压力降通过直径2 mm、长8 mm的等截面圆管时,测得的体积流率为0.05cm3s,在温度不变的情况下以5 MPa压力降测试时体积流率增大到05 cm3s,试从以上测试结果分析该熔体在圆管中的流动是牛顿型还是非牛顿型,并建立表征这种聚合物熔体流动行为的流动方程。解:(1)若此聚合物熔体为牛顿流体,则其熔体黏度不随剪切速率(或者说不随体积流率)变化,将两组数据带入求牛顿流体剪切速率的公式时所得黏度应不变。据,有显然从上两式可以看出,即此熔体不是牛顿流体,而是非牛顿型流体。(2)据非牛流

11、体,将两组数据带入,则: (a) (b) 将(b)除以(a),得,n=。将带入中,有 , K=答:其流动方程9挤出硬质PVC圆棒时,已知口模处料温为177,口模直径为30mm,口模长为120mm,挤出速率为80cm3s,现不考虑端末效应,试求PVC熔体进人口模的压力降和=05MPa时的黏度(见图2-40)。(注意:图表原点为1)解:(1)熔体进人口模的压力降根据在图2-40的177曲线上得两组数据:2105Pa,10s-1;5105Pa,100s-1,代入上式,得 (a) (b)将(b)除以(a),得 得n=0.398代入(a),得, ,假设n=n,且在测定的数据范围内保持不变,则根据式,得,

12、 K= 70469 根据算出熔体进人口模时的压力,(2)=05MPa时的黏度据流动曲线得出=05MPa时的熔体表观黏度,同时据假塑性流体的真实剪切速率与表观剪切速率之间的关系,有假塑性流体在等截面圆管中流动时的表观黏度a(或用计算)10温度、压力和时间如何影响热塑性塑料熔体的流动性?答:聚合物熔体的温度升高后体积膨胀,大分子之间的自由空间随之增大,彼此间的范德华力减小,黏度下降,有利于大分子变形和流动,聚合物熔体的流动性增加。聚合物熔体的压力增大,熔体所受到的剪切速率增加,而熔体的表观黏度随之减小,因而熔体的流动性增加。聚合物熔体成型温度下长时间受热,会产生不同程度的降解,导致熔体黏度下降、流

13、动性增加。11不稳定流动区压力降增大的原因是什么?如何校正?答:不稳定流动区压力降突增的原因:聚合物以收敛方式进入小直径管时,为保持体积流率不变,只有增大熔体内的速度梯度,才能满足调整流速的要求,为此只有消耗适当的能量才能增大速度梯度,加之随流速的增大,流动的动能也相应增大,这也使能量的消耗增多;熔体内的剪切速率增大,迫使聚合物大分子更大和更快的变形,沿流动方向更充分地伸展,而且这种方式的形变过程从入口端开始并在一定的流动距离内持续地进行,而这种具有高弹性特征的形变,需克服分子内和分子间的作用力,也要消耗一定的能量。 压力降突增的校正办法:将入口端额外压力降看成是与一段“相当长度”管道所引起的

14、压力降,用Le表示这个“相当长度”,即将有入口效应时熔体流过长度为L的管道的压力降,当作没有入口效应时熔体流过(L+Le)长度的压力降。12聚合物熔体流出流道或浇口时会发生什么变化?影响离模膨胀的因素有哪些?答:熔体会发生离模膨胀效应(体积膨胀的现象)。影响离模膨胀的因素有:黏度大和非牛顿性强的聚合物熔体在流动过程中容易产生较大的弹性变形,且松弛过程也比较缓慢,故离模膨胀效应严重。弹性模量大的聚合物在流动过程中产生的弹性变形小,离模膨胀效应比较小。增大切应力和剪切速率(不能超过极限值)时,聚合物熔体在流动过程中的弹性变形随着增加,离模膨胀效应加剧。在中等剪切速率范围内,降低温度不仅会增大入口效应和延长松弛时间,同时还会因此而加剧离模膨胀效应。但当剪切速率超过稳定流动允许的极限剪切速率后,离模膨胀反而会随剪切速率增大而减小。 增大流道直径和流道的长径比,以及减小流道人口处的收敛角,都能减小熔体流动过程中的弹性变形,从而减轻离模膨胀效应。13何为聚合物熔体失稳流动?何为熔体破裂?如何克服?答:失稳流动:大分子链会在极高的剪切速率(106s1)作用

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 商业计划书

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号