单片机应用课程设计数字电子钟设计

上传人:人*** 文档编号:511552393 上传时间:2024-01-11 格式:DOC 页数:35 大小:2.50MB
返回 下载 相关 举报
单片机应用课程设计数字电子钟设计_第1页
第1页 / 共35页
单片机应用课程设计数字电子钟设计_第2页
第2页 / 共35页
单片机应用课程设计数字电子钟设计_第3页
第3页 / 共35页
单片机应用课程设计数字电子钟设计_第4页
第4页 / 共35页
单片机应用课程设计数字电子钟设计_第5页
第5页 / 共35页
点击查看更多>>
资源描述

《单片机应用课程设计数字电子钟设计》由会员分享,可在线阅读,更多相关《单片机应用课程设计数字电子钟设计(35页珍藏版)》请在金锄头文库上搜索。

1、单片机应用课程设计系部名称: 机械工程系 专业班级: 机 自 083 学 号: 学生姓名: 指导教师: 2011年06月中原工学院信息商务学院课程设计目 录1 绪论11.1 数字电子钟的应用11.1.1 数字电子钟的意义12 整体方案设计22.1单片机AT89C52和基本结构22.1.1数码管显示选择方案63 数字钟的硬件设计73.1 单片机最小系统73.1.1 DS1302时钟芯片电路93.1.1.1 LED显示电路 104软件设计与流程图124.1 软件设计124.1.1 流程图135 系统仿真165.1 PROTEUS软件介绍165.1.1电子钟系统PROTEUS仿真166原理电路176

2、.1 总原理电路176.1.1单片机最小系统和蜂鸣器系统的电路177调试与功能说明197.1 电路调试197.1.1 软件调试197.1.1.1系统性能测试与功能说明198软件调试问题及解决209结论2010 致谢2111 参考文献2212附录23I1 绪论20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。 时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。但

3、是,一旦重要事情,一时的耽误可能酿成大祸。目前,单片机正朝着高性能和多品种方向发展趋势将是进一步向着CMOS化、低功耗、小体积、大容量、高性能、低价格和外围电路内装化等几个方面发展。下面是单片机的主要发展趋势。单片机应用的重要意义还在于,它从根本上改变了传统的控制系统设计思想和设计方法。从前必须由模拟电路或数字电路实现的大部分功能,现在已能用单片机通过软件方法来实现了。这种软件代替硬件的控制技术也称为微控制技术1,是传统控制技术的一次革命。单片机模块中最常见的是数字钟,数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿

4、命,因此得到了广泛的使用。1.1 数字电子钟的应用数字钟已成为人们日常生活中:必不可少的必需品,广泛用于个人家庭以及车站、码头、剧场、办公室等公共场所,给人们的生活、学习、工作、娱乐带来极大的方便。由于数字集成电路技术的发展和采用了先进的石英技术4,使数字钟具有走时准确、性能稳定、携带方便等优点,它还用于计时、自动报时及自动控制等各个领域。 1.1.1 数字电子钟的意义数字钟是采用数字电路实现对时,分,秒.数字显示的计时装置,广泛用于个人家庭,车站, 码头办公室等公共场所,成为人们日常生活中不可少的必需品,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度超过老式钟表, 钟表的

5、数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。因此,研究数字钟及扩大其应用,有着非常现实的意义。2 整体方案设计设计任务:请设计一个基于单片机的电子时钟,画出PROTEL硬件电路图、编写相应的软件,完成电子时钟的任务,并进行PROTEUS仿真。设计要求:1.启动时显示制作的年、月、日、制作者的学号等信息;2.24小时计时功能(精确到秒);3.整点报时功能;4.对时、分、秒进行校准; 单片机模块驱动模块按键模块LED 显示模块时 钟 模 块电源模块 图1 系

6、统整体框图整个系统用单片机作为中央控制器,由单片机执行采集芯片内部时钟信号,时钟信号通过单片机I/O口传给单片机,单片机模块控制驱动模块驱动显示模块,通过显示模块来实现信号的输出、LED的显示及相关的控制功能。系统设有按键模块用于对时间进行调整及扩展多个小键盘7,系统整体框图如图1所示。2.1 单片机AT89C52和基本结构9AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM)。主要性能有:兼容MCS51指令系统、32个双向I/O口、256x8bit内部RAM、3个16位可编程定时

7、/计数器中断、时钟频率0-24MHz、2个串行中断、可编程UART串行通道、2个外部中断源、6个中断源、2个读写中断口线、3级加密位、低功耗空闲和掉电模式、软件设置睡眠和唤醒功能。8052单片机包含中央处理器、程序存储器(ROM)、数据存储器(RAM)、定时/计数器、并行接口、串行接口和中断系统等几大单元及数据总线、地址总线和控制总线等三大总线,现在我们分别加以说明:中央处理器:中央处理器(CPU)是整个单片机的核心部件,是8位数据宽度的处理器,能处理8位二进制数据或代码,CPU负责控制、指挥和调度整个单元系统协调的工作,完成运算和控制输入输出功能等操作。数据存储器(RAM):8052内部有1

8、28个8位用户数据存储单元和128个专用寄存器单元,它们是统一编址的,专用寄存器只能用于存放控制指令数据,用户只能访问,而不能用于存放用户数据,所以,用户能使用的RAM只有128个,可存放读写的数据,运算的中间结果或用户定义的字型表。图2-1 单片机8052的内部结构程序存储器(ROM):8052共有4096个8位掩膜ROM,用于存放用户程序,原始数据或表格。定时/计数器(ROM):8052有两个16位的可编程定时/计数器,以实现定时或计数产生中断用于控制程序转向。并行输入输出(I/O)口:8052共有4组8位I/O口(P0、 P1、P2或P3),用于对外部数据的传输。全双工串行口:8052内

9、置一个全双工串行通信口,用于与其它设备间的串行数据传送,该串行口既可以用作异步通信收发器,也可以当同步移位器使用。中断系统:8052具备较完善的中断功能,有两个外中断、两个定时/计数器中断和一个串行中断,可满足不同的控制要求,并具有2级的优先级别选择。时钟电路:8052内置最高频率达12MHz的时钟电路,用于产生整个单片机运行的脉冲时序,但8052单片机需外置振荡电容。单片机的结构有两种类型,一种是程序存储器和数据存储器分开的形式,即哈佛(Harvard)结构,另一种是采用通用计算机广泛使用的程序存储器与数据存储器合二为一的结构,即普林斯顿(Princeton)结构。INTEL的MCS-52系

10、列单片机采用的是哈佛结构的形式,而后续产品16位的MCS-96系列单片机则采用普林斯顿结构。图2-2 MCS-52系列单片机的内部结构MCS-52的引脚说明:MCS-52系列单片机中的8031、8051及8751均采用40Pin封装的双列直接DIP结构,右图是它们的引脚配置,40个引脚中,正电源和地线两根,外置石英振荡器的时钟线两根,4组8位共32个I/O口,中断口线与P3口线复用。现在我们对这些引脚的功能加以说明:MCS-51的引脚说明:MCS-52系列单片机中的8031、8051及8751均采用40Pin封装的双列直接DIP结构,右图是它们的引脚配置,40个引脚中,正电源和地线两根,外置石

11、英振荡器的时钟线两根,4组8位共32个I/O口,中断口线与P3口线复用。现在我们对这些引脚的功能加以说明:图2-3 单片机的引脚图Pin9:RESET/Vpd复位信号复用脚,当8052通电,时钟电路开始工作,在RESET引脚上出现24个时钟周期以上的高电平,系统即初始复位。初始化后,程序计数器PC指向0000H,P0-P3输出口全部为高电平,堆栈指针写入07H,其它专用寄存器被清“0”。RESET由高电平下降为低电平后,系统即从0000H地址开始执行程序。然而,初始复位不改变RAM(包括工作寄存器R0-R7)的状态,8052的初始态。8051的复位方式可以是自动复位,也可以是手动复位,。此外,

12、RESET/V还是一复用脚,VCC掉电其间,此脚可接上备用电源,以保证单片机内部RAM的数据不丢失。图2-4 上电自动和手动复位电路图图2-5 内部和外部时钟方式图Pin30:ALE/PROG当访问外部程序器时,ALE(地址锁存)的输出用于锁存地址的低位字节。而访问内部程序存储器时,ALE端将有一个1/6时钟频率的正脉冲信号,这个信号可以用于识别单片机是否工作,也可以当作一个时钟向外输出。更有一个特点,当访问外部程序存储器,ALE会跳过一个脉冲。 如果单片机是EPROM,在编程其间,PROG将用于输入编程脉冲。Pin29:PSEN当访问外部程序存储器时,此脚输出负脉冲选通信号,PC的16位地址

13、数据将出现在P0和P2口上,外部程序存储器则把指令数据放到P0口上,由CPU读入并执行。Pin31:EA/Vpp程序存储器的内外部选通线,8051和8751单片机,内置有4kB的程序存储器,当EA为高电平并且程序地址小于4kB时,读取内部程序存储器指令数据,而超过4kB地址则读取外部指令数据。如EA为低电平,则不管地址大小,一律读取外部程序存储器指令。显然,对内部无程序存储器的8031,EA端必须接地。2.1.1 数码管显示选择方案方案一:静态显示。静态显示,即当显示器显示某一字符时,相应的发光二极管恒定导通或截止。该方式每一位都需要一个8 位输出口控制。静态显示时较小电流能获得较高的亮度,且

14、字符不闪烁。但因当所需显示的位数较多时,静态显示所需的I/O口数较大,造成资源的浪费6。方案二:动态显示。即各位数码管轮流点亮,对于显示器各位数码管,每隔一段延时时间循环点亮一次。显示器的亮度与导通电流、点亮时间及间隔时间的比例有关动态显示节省了I/O口,降低了能耗8。从节省单片机芯片I/O口和降低能耗角度出发,电子钟数码管显示选择设计采用方案二。3 数字钟的硬件设计3.1 单片机最小系统单片机最小系统:单片机的最小系统是由电源、复位、晶振、/EA=1组成,下面介绍一下每一个组成部分1.电源引脚VCC40电源端GND20接地端工作电压为5V,另有AT89LV51工作电压则是2.7-6V, 引脚

15、功能一样。 2.外接晶体引脚10XTAL1是片内振荡器的反相放大器输入端,XTAL2则是输出端,使用外部振荡器时,外部振荡信号应直接加到XTAL1,而XTAL2悬空。内部方式时,时钟发生器对振荡脉冲二分频,如晶振为12MHz,时钟频率就为6MHz。晶振的频率可以在1MHz-24MHz内选择。电容取30PF左右。系统的时钟电路设计是采用的内部方式,即利用芯片内部的振荡电路。AT89单片机内部有一个用于构成振荡器的高增益反相放大器。引脚XTAL1和XTAL2分别是此放大器的输入端和输出端。这个放大器与作为反馈元件的片外晶体谐振器一起构成一个自激振荡器。外接晶体谐振器以及电容C1和C2构成并联谐振电路,接在放大器的反馈

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 资格认证/考试 > 自考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号