蜗轮蜗杆传动承载能力计算

上传人:cl****1 文档编号:511471052 上传时间:2023-02-23 格式:DOCX 页数:16 大小:193.84KB
返回 下载 相关 举报
蜗轮蜗杆传动承载能力计算_第1页
第1页 / 共16页
蜗轮蜗杆传动承载能力计算_第2页
第2页 / 共16页
蜗轮蜗杆传动承载能力计算_第3页
第3页 / 共16页
蜗轮蜗杆传动承载能力计算_第4页
第4页 / 共16页
蜗轮蜗杆传动承载能力计算_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《蜗轮蜗杆传动承载能力计算》由会员分享,可在线阅读,更多相关《蜗轮蜗杆传动承载能力计算(16页珍藏版)》请在金锄头文库上搜索。

1、普通圆柱蜗杆传动承载能力计算(一) 蜗杆传动的失效形式、设计准则及常用材料 和齿轮传动一样,蜗杆传动的失效形式也有点蚀(齿面接触疲劳破坏)、齿根折断、曲面胶 合及过度磨损等。由于材料和结构上的原因,蜗杆螺旋齿部分的强度总是高于蜗轮轮齿的强度, 所以失效经常发生在蜗轮轮齿上。因此,一般只对蜗轮轮齿进行承载能力计算。由于蜗杆与蜗 轮齿面间有较大的相对滑动,从而增加了产生胶合和磨损失效的可能性,尤其在某些条件下(如 润滑不良),蜗杆传动因齿面胶合而失效的可能性更大。因此,蜗杆传动的承载能力往往受到抗 胶合能力的限制。在开式传动中多发生齿面磨损和轮齿折断,因此应以保证齿根弯曲疲劳强度作为开式传动 的主

2、要设计准则。在闭式传动中,蜗杆副多因齿面胶合或点蚀而失效。因此,通常是按齿面接触疲劳强度进 行设计,而按齿根弯曲疲劳强度进行校核。此外,闭式蜗杆传动,由于散热较为困难,还应作 热平衡核算。由上述蜗杆传动的失效形式可知,蜗杆、蜗轮的材料不仅要求具有足够的强度,更重要的 是要具有良好的磨合和耐磨性能。蜗杆一般是用碳钢或合金钢制成。高速重载蜗杆常用15Cr或20Cr,并经渗碳淬火;也可用 40、45 号钢或 40Cr 并经淬火。这样可以提高表面硬度,增加耐磨性。通常要求蜗杆淬火后的硬度为4055HRC,经氮化处理后的硬度为5562HRC。一般不太重要的低速中载的蜗杆,可 采用40或45号钢,并经调质

3、处理,其硬度为220300HBS。常用的蜗轮材料为铸造锡青铜(ZCuSnlOPl, ZCuSn5Pb5Zn5)、铸造铝铁青铜(ZCuAl10Fe3) 及灰铸铁(HT15O、HT2OO)等。锡青铜耐磨性最好,但价格较高,用于滑动速度Vs$3m/s的重要 传动;铝铁青铜的耐磨性较锡青铜差一些,但价格便宜,一般用于滑动速度VsW4m/s的传动; 如果滑动速度不高(Vs2m/s),对效率要求也不高时,可采用灰铸铁。为了防止变形,常对蜗轮 进行时效处理。(二) 蜗杆传动的受力分析 蜗杆传动的受力分析和斜齿圆柱齿轮传动相似。在进行蜗杆传动的受力分析时,通常不考 虑摩擦力的影响。图蜗杆传动的受力分析所示是以

4、右旋蜗杆为主动件,并沿图示的方向旋转时,蜗杆螺旋 面上的受力情况。设Fn为集中作用于节点P处的法向载荷,它作用于法向截面Pabc内(图蜗 杆传动的受力分析a)。Fn可分解为三个互相垂直的分力,即圆周力Ft、径向力Fr和轴向力F a。显然,在蜗杆与蜗轮间,相互作用着Ft1与Fa2、Fr1与Fr2和Fa1与Ft2这三对大小相等、 方向相反的力(图蜗杆传动的受力分析c)。b图蜗杆传动的受力分析在确定各力的方向时,尤其需注意蜗杆所受轴向力方向的确定。因为轴向力的方向是由螺 旋线的旋向和蜗杆的转向来决定的,如图蜗杆传动的受力分析a所示,该蜗杆为右旋蜗杆,当 其为主动件沿图示方向(由左端视之为逆时针方向)

5、回转时,如图蜗杆传动的受力分析b所示, 蜗杆齿的右侧为工作面(推动蜗轮沿图c所示方向转动),故蜗杆所受的轴向力Fa1(即蜗轮齿给 它的阻力的轴向分力)必然指向左端(见图蜗杆传动的受力分析c下部)。如果该蜗杆的转向相反,则蜗杆齿的左侧为工作面(推动蜗轮沿图c所示方向的反向转动),故此时蜗杆所受的轴向力必指向右端。至于蜗杆所受圆周力的方向,总是与它的转向相反的;径向力的方向则总是指向轴心的。关于蜗轮上各力的方向,可由图蜗杆传动的受力分析C所示的关系定出当不计摩擦力的影响时,各力的大小可按下列各式计算:cos cos/ cos cos y coscos y式中:T1、T2分别为蜗杆及蜗轮上的公称转矩

6、;d1、d2分别为蜗杆及蜗轮的分度圆直径。(三)蜗杆传动强度计算I蜗轮齿面接触疲劳强度计算蜗轮齿面接触疲劳强度计算的原始公式仍来源于赫兹公式。接触应力式中:Fn啮合齿面上的法向载荷,N;L0一接触线总长,mm;K载荷系数;ZE材料的弹性影响系数,丽青铜或铸铁蜗轮与钢蜗杆配对时,取ZE=16将以上公式中的法向载荷Fn换算成蜗轮分度圆直径d2与蜗轮转矩T2的关系式,再将d2、L0、p工等换算成中心距的函数后,即得蜗轮齿面接触疲劳强度的验算公式为式中:Zp蜗杆传动的接触线长度和曲率半径对接触强度的影响系数,简称接触系数,可从图圆柱蜗杆传动的接触系数中查得。图圆柱蜗杆传动的接触系数K载荷系数,K=KA

7、KBKv,其中KA为使用系数,查下表使用系数KA; KB为齿向载荷 分布系数,当蜗杆传动在平稳载荷下工作时,载荷分布不均现象将由于工作表面良好的磨合而 得到改善,此时可取KB=1 ;当载荷变化较大,或有冲击、振动时,可取KB=;Kv为动载系 数,由于蜗杆传动一般较平稳,动载荷要比齿轮传动的小得多,故Kv值可取定如下:对于精确 制造,且蜗轮圆周速度v2W3m/s时,取Kv二;v23m/s时,Kv二。oH蜗轮齿面的许用接触应力。使用系数KA工作类型IIIIII载荷性质均匀,无冲击不均匀,小冲击不均匀,大冲击每小时起动次数50起动载荷小较大大KA1当蜗轮材料为灰铸铁或高强度青铜(oB$300MPa)

8、时,蜗杆传动的承载能力主要取决于齿 面胶合强度。但因日前尚无完善的胶合强度计算公式,故采用接触强度计算是一种条件性计算, 在查取蜗轮齿面的许用接触应力时,要考虑相对滑动速度的大小。由于胶合不属于疲劳失效, oH的值与应力循环次数N无关,因而可直接从表灰铸铁及铸铝铁青铜蜗轮的许用接触应力 中查出许用接触应力oH的值。若蜗轮材料为强度极限oB300MPa的锡青铜,因蜗轮主要为接触疲劳失效,故应先从表 铸锡青铜蜗轮的基本许用接触应力中查出蜗轮的基本许用接触应力oH ,再接oH =KHNoH ,算出许用接触应力的值。上面KHN为接触强度的寿命系数。其中,应力循环次数N=60jn2Lh,此处n2为蜗轮转

9、速,r/min; Lh为工作寿命,h; j为蜗轮每转一转, 每个轮齿啮合的次数。灰铸铁及铸铝铁青铜蜗轮的许用接触应力oH(MPa)材料滑动速度vs(m/s)蜗杆蜗轮45HRC铸锡磷青铜ZCuSn10P1砂模铸造150180金属模铸造220268铸锡锌铅青铜ZCuSn5Pb5Zn5砂模铸造113135金属模铸造128140注:锡青铜的基本许用接触应力为应力循环次数时之值,当Nf 时,需将表中数 值乘以寿命系数KHN;当N25X10时,取N=25X1L;当Nxl时,取N=xl。从蜗轮齿面接触疲劳强度的验算公式中可得到按蜗轮接触疲劳强度条件设计计算的公式为从上式算出蜗杆传动的中心距a后,可根据预定的

10、传动比i(z2/z1)从表普通圆柱蜗杆基 本尺寸和参数及其与蜗轮参数的匹配中选择一合适的a值,以及相应的蜗杆、蜗轮的参数。普通圆柱蜗杆基本尺寸和参数及其与蜗轮参数的匹配中心距模数分度圆直径蜗杆头数直径系数分度圆导程角蜗轮齿数变位系数a(mm)m(mm)d1(mm)(何巧z1qY()z2x240118181310476205082040203343549503513113862+6382+1434265020290525514174441632813161461+8082+40150608292100729(50)(39)4193914(63)2(51)(+6281043801421313286

11、2+1008250150608292100729(63)28175(39)(+4193914(80)(53)62810431004513104762063150415292100348(+(80)(39)4193229(100)(53)6280150125561313106280154238312111836(100)40640(41)44214805(+(125)(51)630575016071113613132862+10015423831(125)5012502111836(41)(160)54214805(53)(+(180)6305750(61)(+20090225013104762012515423831(160)632111836(41)(180)4214805(48)(200)6305750(53)(+25011213131061+注:1)本表中导程角Y小于330的圆柱蜗杆均为自锁蜗杆。2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号