空间向量与立体几何知识点

上传人:re****.1 文档编号:511073908 上传时间:2023-03-14 格式:DOCX 页数:24 大小:192.72KB
返回 下载 相关 举报
空间向量与立体几何知识点_第1页
第1页 / 共24页
空间向量与立体几何知识点_第2页
第2页 / 共24页
空间向量与立体几何知识点_第3页
第3页 / 共24页
空间向量与立体几何知识点_第4页
第4页 / 共24页
空间向量与立体几何知识点_第5页
第5页 / 共24页
点击查看更多>>
资源描述

《空间向量与立体几何知识点》由会员分享,可在线阅读,更多相关《空间向量与立体几何知识点(24页珍藏版)》请在金锄头文库上搜索。

1、 立体几何空间向量知识点总结知识网络:知识点拨:1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广2、当、为非零向量时是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题3、公式是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值范围上的区别),再结合平面的法向量,可以求直线与平面所

2、成的角和二面角等4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题5、用空间向量判断空间中的位置关系的常用方法(1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量(2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即(3)线面平行 用向量证明线面平行的方法主要有: 证明直线的方向向量与平面的法向量垂直; 证明可在平面内找到一个向量与直线方向向量是共线向量; 利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向

3、向量(4)线面垂直 用向量证明线面垂直的方法主要有: 证明直线方向向量与平面法向量平行; 利用线面垂直的判定定理转化为线线垂直问题(5)面面平行 证明两个平面的法向量平行(即是共线向量); 转化为线面平行、线线平行问题(6)面面垂直 证明两个平面的法向量互相垂直; 转化为线面垂直、线线垂直问题6、运用空间向量求空间角(1)求两异面直线所成角 利用公式, 但务必注意两异面直线所成角的范围是, 故实质上应有:(2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角,即可求出直线

4、与平面所成的角,其关系是sin| cos|(3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离(1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模(2)点与面的距离 点面距离的求解步骤是:求出该平面的一个法向量; 求出从该点出发的平面的任一条斜线段对应的向量; 求出法向量

5、与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离备考建议:1、空间向量的引入,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,应体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力2、灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题3、在解决立体几何中有关平行、垂直、夹角、距离等问题时,直线的方向向量与平面的法向量有着举足轻重的地位和作用,它的特点是用代数方法解决立体几何问题,无需进行繁、难的几何作图和推理论证,起着从抽象到具体、化难为易的作用因此,应熟练掌握平面法向量的求法和用法4、加强运算能力的培养,提高运算的速度和

6、准确性第一讲 空间向量及运算一、空间向量的有关概念1、空间向量的定义 在空间中,既有大小又有方向的量叫做空间向量注意空间向量和数量的区别数量是只有大小而没有方向的量2、空间向量的表示方法 空间向量与平面向量一样,也可以用有向线段来表示,用有向线段的长度表示向量的大小,用有向线段的方向表示向量的方向若向量对应的有向线段的起点是A,终点是B,则向量可以记为,其模长为或3、零向量 长度为零的向量称为零向量,记为零向量的方向不确定,是任意的由于零向量的这一特殊性,在解题中一定要看清题目中所指向量是“零向量”还是“非零向量”4、单位向量 模长为1的向量叫做单位向量单位向量是一种常用的、重要的空间向量,在

7、以后的学习中还要经常用到5、相等向量 长度相等且方向相同的空间向量叫做相等向量若向量与向量相等,记为=.零向量与零向量相等,任意两个相等的非零向量都可以用空间中的同一条有向线段来表示,并且与有向线段的起点无关6、相反向量 长度相等但方向相反的两个向量叫做相反向量的相反向量记为二、共面向量1、定义 平行于同一平面的向量叫做共面向量2、共面向量定理 若两个向量、不共线,则向量与向量、共面的充要条件是存在实数对x、y,使得=。3、空间平面的表达式空间一点P位于平面MAB内的充要条件是存在有序实数对x、y使或对空间任一定点O,有或(其中)这几个式子是M,A,B,P四点共面的充要条件三、空间向量基本定理

8、1、定理 如果三个向量、不共面,那么对空间任一向量,存在唯一的有序实数组x、y、z,使=2、注意以下问题(1)空间任意三个不共面的向量都可以作为空间向量的一个基底(2)由于可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是。(3)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,两者是相关联的不同概念 由空间向量的基本定理知,若三个向量、不共面。那么所有空间向量所组成的集合就是,这个集合可看做是由向量、生成的,所以我们把称为空间的一个基底。、叫做基向量,空间任意三个不共面的向量都可构成空间的一个基底 3、向量的坐标表示 (1)单位正交基底 如

9、果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用表示(2)空间直角坐标系 在空间选定一点O和一个单位正交基底以点O为原点,分别以、的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫坐标轴则建立了一个空间直角坐标系Oxyz,点O叫原点,向量、都叫坐标向量 (3)空间向量的坐标给定一个空间直角坐标系和向量,且设、为坐标向量,存在唯一有序数组(x,y,z)使,有序数组(x,y,z)叫做在空间直角坐标系Oxyz中的坐标,记为=。对坐标系中任一点A,对应一个向量,则=。在单位正交基底、中与向量对应的有序实数组(x,y,z),叫做点A在此空间直角坐标系中的坐标,记为A

10、(x,y,z).四、空间向量的运算1、空间向量的加法三角形法则(注意首尾相连)、平行四边形法则,加法的运算律:交换律 结合律 2、空间向量的减法及几何作法几何作法:在平面内任取一点O,作,则,即从的终点指向的终点的向量,这就是向量减法的几何意义3、空间向量的数乘运算 (1)定义实数与的积是一个向量,记为,它的模与方向规定如下: 当时,与同向;当时,与异向;当时注意: 关于实数与空间向量的积的理解:我们可以把的模扩大(当1时),也可以缩小( 1 时),同时,我们可以不改变向量的方向(当时),也可以改变向量的方向(当时)。 . 注意实数与向量的积的特殊情况,当时,;当,若时,有。 注意实数与向量可

11、以求积,但是不能进行加减运算比如,无法运算。(2)实数与空间向量的积满足的运算律设、是实数,则有 (结合律) (第一分配律) (第二分配律)实数与向量的积也叫数乘向量4、共线向量 (1)共线向量定义若表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量,也叫做平行向量。若与是共线向量,则记为/。注意:零向量和空间任一向量是共线向量(2)共线向量定理对空间任意两个向量、(),/的充要条件是存在实数使(3)空间直线的向量表示式如果直线 l 是经过已知点 A 且平行于已知非零向量的直线,那么对任一点 O,点P在直线 l 上的充要条件是存在实数t,满足等式,其中向量叫做直线 l 的方

12、向向量注意:若在 l 上取,则有上式可解决三点P、A、B 共线问题的表示或判定 当时,点P为AB的中点,这是中点公式的向量表达式 若P分所成比为,则5、空间直角坐标系在空间直角坐标系中,三条坐标轴两两互相垂直,轴的方向通常这样选择:从z轴的正方向看,x轴正半轴沿逆时针方向转 900能与 y 轴的正半轴重合。让右手拇指指向 x 轴正方向食指指向 y 轴的正方向,如果中指指向 z 轴的正方向,那么称这个坐标系为右手直角坐标系。一般情况下,建立的坐标系都是右手直角坐标系在平面上画空间直角坐标系 Oxyz 时,一般使xOy=135,yOz=90。空间两点间的距离公式是平面上两点间距离公式的推广,是空间

13、向量模长公式的推广,如果知道儿何体上任意两点的坐标我们就可直接套用设,则特别地,P1(x,y,z)到原点的距离 6、空间向量的数量积运算其中的夹角,范围是0,注意数量积的性质和运算律。 1. 性质若是非零向量,是与方向相同的单位向量,是的夹角,则(1)(2)(3)若同向,则;若反向,则;特别地:(4)若为(5) 2. 运算律(1)结合律(2)交换律(3)分配律不满足消去律和结合律即:【典型例题】 例1. 已知P是平面四边形ABCD所在平面外一点,连结PA、PB、PC、PD,点E、F、G、H分别为PAB、PBC、PCD、PDA的重心。求证:E、F、G、H四点共面。证明:分别延长PE、PF、PG、

14、PH交对边于M、N、Q、RE、F、G、H分别是所在三角形的重心M、N、Q、R为所在边的中点,顺次连结MNQR所得四边形为平行四边形,且有MNQR为平行四边形,则由共面向量定理得E、F、G、H四点共面。 例2. 如图所示,在平行六面体中,P是CA的中点,M是CD的中点,N是CD的中点,点Q是CA上的点,且CQ:QA=4:1,用基底表示以下向量:(1);(2);(3);(4)。解:连结AC、AD(1);(2);(3)(4)点评:本例是空间向量基本定理的推论的应用此推论意在用分解定理确定点的位置,它对于以后用向量方法解几何问题很有用,选定空间不共面的三个向量作基向量并用它们表示出指定的向量,是用向量解决几何问题的一项基本功 例3. 已知空间四边形OABC中,AOB=BOC=AOC,且OA=OB=OC。M、N分别是OA、BC的中点,G是MN的中点。求证:OGBC。证明:连结ON,设AOB=BOC=AOC=又设,则。又OGBC 例4. 已知空间三点A

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号