相似三角形的证明

上传人:大米 文档编号:510904542 上传时间:2023-03-10 格式:DOCX 页数:23 大小:1.01MB
返回 下载 相关 举报
相似三角形的证明_第1页
第1页 / 共23页
相似三角形的证明_第2页
第2页 / 共23页
相似三角形的证明_第3页
第3页 / 共23页
相似三角形的证明_第4页
第4页 / 共23页
相似三角形的证明_第5页
第5页 / 共23页
点击查看更多>>
资源描述

《相似三角形的证明》由会员分享,可在线阅读,更多相关《相似三角形的证明(23页珍藏版)》请在金锄头文库上搜索。

1、相似三角形解题方法、技巧、步骤、辅助线解析一、相似、全等的关系全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为基础 二、相似三角形(1)三角形相似的条件: ; ; .三、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.四、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单;2)再而先找一对内角对

2、应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;a)已知一对等角找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似 b)己知两边对应成比例找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似 c)己知一个直角 找另一角 两角对应相等,两三角形相似 找两边对应成比例 判定定理1或判定定理4d)有等腰关系 找顶角对应相等 判定定理1 找底角对应相等 判定定理1 找底和腰对应成比例 判定定理3 e)相似形的传递性 若

3、12,23,则13五、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。例1、已知:如图,ABC中,CEAB,BFAC.求证: 例2、如图,CD是RtABC的斜边AB

4、上的高,BAC的平分线分别交BC、CD于点E、F,ACAE=AFAB吗?说明理由。分析方法:1)先将积式_2)_( “横定”还是“竖定”? )例3、已知:如图,ABC中,ACB=900,AB的垂直平分线交AB于D,交BC延长线于F。求证:CD2=DEDF。 分析方法:1)先将积式_2)_( “横定”还是“竖定”? )六、过渡法(或叫代换法)有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明1、 等量过渡法(等线段代换法)遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽然组成两

5、个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。然后再应用三点定形法确定相似三角形。只要代换得当,问题往往可以得到解决。当然,还要注意最后将代换的线段再代换回来。例1:如图3,ABC中,AD平分BAC, AD的垂直平分线FE交BC的延长线于E求证:DE2BECE分析: 2、 等比过渡法(等比代换法)当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代换,然后再用三点

6、定形法来确定三角形。例2:如图4,在ABC中,BAC=90,ADBC,E是AC的中点,ED交AB的延长线于点F求证:3、等积过渡法(等积代换法)思考问题的基本途径是:用三点定形法确定两个三角形,然后通过三角形相似推出线段成比例;若三点定形法不能确定两个相似三角形,则考虑用等量(线段)代换,或用等比代换,然后再用三点定形法确定相似三角形,若以上三种方法行不通时,则考虑用等积代换法。例3:如图5,在ABC中,ACB=90,CD是斜边AB上的高,G是DC延长线上一点,过B作BEAG,垂足为E,交CD于点F求证:CD2DFDG同类练习: 1如图,ABC中,点CD在边AB上,且PCD是等边三角形,APB

7、=120求证:(1)PCABPD;(2)CD2=ACBD;(3)APPB=PCAB. 2如图, 平行四边形ABCD中,E为BA延长线上一点, D=ECA. 求证:ADEC=ACEB . 4 如图,AD为ABC中BAC的平分线,EF是AD的垂直平分线。求证:FD2=FCFB。5如图,F为平行四边形ABCD边DC延长线上一点,连接AF,交BC于点G,交BD于点E试说明:AE2=EGEF 6如图,E是正方形ABCD边BC延长线上一点,连接AE交CD于F,过F作FMBE交DE于M.求证:FM=CF.7如图,ABC中,AB=AC,D为BC中点,E为AD上任意一点,过C作CFAB交BE的延长线于F,交AC

8、于G,连接CE求证:(1)BE=CE. (2)BE2=EGFE.9如图,ABCD为直角梯形,ABCD,ABBC,ACBD。AD= BD,过E作EFAB交AD于F.试说明:(1)AF=BE;(2)AF2=AEEC.七、证比例式和等积式的方法:对线段比例式或等积式的证明:常用“三点定形法”、等线段替换法、中间比过渡法、面积法等若比例式或等积式所涉及的线段在同一直线上时,应将线段比“转移”(必要时需添辅助线),使其分别构成两个相似三角形来证明 图5AEFBDGCH例1如图5在ABC中,AD、BE分别是BC、AC边上的高,DFAB于F,交AC的延长线于H,交BE于G,求证:(1)FG / FAFB /

9、 FH (2)FD是FG与FH的比例中项例2如图6,ABCD中,E是BC上的一点,AE交BD于点F,已知BE:EC3:1, SFBE18,求:(1)BF:FD (2)SFDA CADBEF图6例3如图7在ABC中,AD是BC边上的中线,M是AD的中点,CM的延长线交AB于N求:AN:AB的值; BEACDMN ABCEDGF例4如图8在矩形ABCD中,E是CD的中点,BEAC交AC于F,过F作FGAB交AE于G求证:AG 2AFFC 例5如图在ABC中,D是BC边的中点,且ADAC,DEBC,交AB于点E,EC交AD于点F(1)求证:ABCFCD;(2)若SFCD5,BC10,求DE的长AEB

10、DMCF例6如图10过ABC的顶点C任作一直线与边AB及中线AD分别交于点F和E过点D作DMFC交AB于点M(1)若SAEF:S四边形MDEF2:3,求AE:ED; (2)求证:AEFB2AFED 图10CEDAFMB例7 己知如图11在正方形ABCD的边长为1,P是CD边的中点,Q在线段BC上,当BQ为何值时,ADP与QCP相似?PADBQC图11 例8己知如图12在梯形ABCD中,ADBC,A900,AB7,AD2,BC3试在边AB上确定点P的位置,使得以P、A、D为顶点的三角形与以P、B、C为顶点的三角形相似 图12ADBCP1P2P3例11如图,已知ABC中,AB=AC,AD是BC边上

11、的中线,CFBA,BF交AD于P点,交AC于E点。 求证:BP2=PEPF。 例12如图,已知:在ABC中,BAC=900,ADBC,E是AC的中点,ED交AB的延长线于F。 求证: 。 九、相似三角形中的辅助线一、作平行线例1. 如图,的AB边和AC边上各取一点D和E,且使ADAE,DE延长线与BC延长线相交于F,求证: 例2. 如图,ABC中,ABAC,在AB、AC上分别截取BD=CE,DE,BC的延长线相交于点F,证明:ABDF=ACEF。 例3、如图,B为AC的中点,E为BD的中点,则AF:AE=_.例4、如图,已知平行四边形ABCD中,对角线AC、BD交于O点,E为AB延长线上一点,

12、OE交BC于F,若AB=a,BC=b,BE=c,求BF的长例5、ABC中,在AC上截取AD,在CB延长线上截取BE,使AD=BE,求证:DFAC=BCFE例6:如图ABC中,AD为中线,CF为任一直线,CF交AD于E,交AB于F,求证:AE:ED=2AF:FB。二、作延长线例7. 如图,RtABC中,CD为斜边AB上的高,E为CD的中点,AE的延长线交BC于F,FGAB于G,求证:FG=CFBF例8如图4-1,已知平行四边ABCD中,E是AB的中点,连E、F交AC于G求AG:AC的值 三、作中线例10: 已知:如图,ABC中,ABAC,BDAC于D求证: BC22CDAC综合题型1.已知:如图,在中,是角平分线,试

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 建筑资料

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号