三相三电平逆变器SVPWM算法文档

上传人:re****.1 文档编号:509715857 上传时间:2024-01-26 格式:DOCX 页数:5 大小:203.38KB
返回 下载 相关 举报
三相三电平逆变器SVPWM算法文档_第1页
第1页 / 共5页
三相三电平逆变器SVPWM算法文档_第2页
第2页 / 共5页
三相三电平逆变器SVPWM算法文档_第3页
第3页 / 共5页
三相三电平逆变器SVPWM算法文档_第4页
第4页 / 共5页
三相三电平逆变器SVPWM算法文档_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《三相三电平逆变器SVPWM算法文档》由会员分享,可在线阅读,更多相关《三相三电平逆变器SVPWM算法文档(5页珍藏版)》请在金锄头文库上搜索。

1、基于matlab的三相三电平逆变器SVPWM算法2010-11-8 19:51:00 来源:作者:惡摘要:本文介绍了二极管中点箝位式三电平电压型逆变器为主电路的逆变装置, 详细分析了三相三电平逆变器SVPWM传统算法的原理,详细阐述了 SVPWM波形 发生的方法,在Matlab/simulink里以三电平逆变器为对象进行了仿真分析。仿真结果 与二电平进行了比较,结果证实了三电平控制方法的有效性和模型的正确性为三电 平逆变器的研究提供了一个有效的参考。伴随着高速列车的引进,我国铁路事业进入了高速时代,其中对CRH2机车关键技术 的研究已经有突破性进展。该车上的变频装置属于大容量、高电压变频装置,

2、由于目 前的单管容量以及传统的两电平的控制方式均无法满足应用要求,于是采用三电平控 制器,三电平可以使开关器件承受的压降降低、改善输出波形的波形质量、减小逆变 器和负载收到的冲击等优点,采用在高速列车动车组上。所谓三电平每相桥臂由4个电力电子开关器件串联组成,直流回路中性点0(其电位为 零)由2个箝位二级管引出,分别接到上、下桥臂的中间,这样,每个电力电子开关 器件的耐压值可降低一半,故结构更适合于中压大功率交流传动控制,这也是目前广 泛应用的拓扑结构。三电平中点箝位式逆变器主电路如图1所示。图1三电平中点钳位式逆变器主电路三电平逆变器的Park矢量为TT 2-(iU +5 + U e7J $

3、(1)通常,逆变器利用开关器件的开通和关断经由各相只输出+Udc/2, 0, -Udc/2三种电 压,通式(1)变换,输出电压矢量仅有27种类型,也就是说逆变器输出27种基本矢量, 如表1所示。这里,一般将幅值为2Udc/3的矢量定义为大电压矢量,如PNN,PPN; 幅值为3 Udc/3的矢量定义为中电压矢量,如PON;幅值为Udc/3的矢量定义为小电 压矢量,如POO,ONN。以上三类矢量可以分别简称为大矢量、中矢量和小矢量。基本矢量类型对应的三相输出开关状态长矢量pnnppnnpnnppnnppnp中矢量Popopnnponoponppno短矢量PooonnppooonopononOpp

4、noo opp noo pop non零矢量Ppp ooo nnn表1三电平矢量表为了实现三电平逆变器的SVPWM控制,在每个采样周期内,应分为一下三个步骤:(1)区域判断。找出合成参考电压矢量的三个基本矢量。(2)时间计算。确定三个基本矢量的作用时间,即每个矢量对应的占空比。(3)时间状态分配。确定各个基本矢量对应的开关状态及作用次序,将基本矢量对应的 作用时间分配给相应的开关状态,完成对开关器件的控制。1、区域判断传统算法根据三电平基本空间矢量图将整个矢量空间先分成6个大区域,再将每个大 区域分成4个小区域。由于基本空间矢量中的短矢量在每个采样周期中出现的次数 多,为了算法及仿真的准确性,

5、本文将每个大区域细分成6个小区域。按照这样的划分方法,传统三电平SVPWM算法的区域划分如图2所示。用I、II、III,IV、V、V1表示大区域,用1,2,3,4,5,6表示小区域。大区域按照矢量角度每60为一区划分,因此可以按照参考电压矢量的角度判断其所 在的大区域。根据小区域的区域分布情况和几何关系,可以按照以下方法判断参考电 压矢量所在的小区域。2某一个丸扇区下小冈域划芬(一)大区域的判断方法和两电平的基本一致,但这里用了一个传统的方法来判断大 扇区。当在电机上加三相正弦电压时,电机气隙中产生圆形的磁链。然后我们讲这个 三个相差120的正弦电流按照式(1)进行矢量合成,然后对 进行幅值和

6、相角的变 换。这时得到一个相角不断变化的数值,再利用Matlab中Fun模块的ceil (cei 1:朝 正无穷方向舍入)功能对其进行大扇区的判断。得到扇区的值N。下面进行小扇区的 判断。(二)小扇区的判断三、作用时间计算判断出参考矢量所在的区域后,根据伏秒平衡方程组解出、即完成了传统三电平SVPWM算法对基本空间矢量作用时间的计算。区域范围内的基本矢量作用时间如表1所示爲叫+爲嗚+爲疇解出、即完成了传统三电平SVPWM算法对基本空间矢量作用时间的计算。区域范围内的基本矢量作用时间如表1所示表1基本矢量作用时间表跟据以上表格可以找到规律如下,大扇区一三五的作用时间的变化规律一样,大扇区 二四六

7、的作用时间的变化规律一样,就只分析大扇区一和二。这样可以得到作用时 间、,于是大扇区第二小扇区的作用时间只要调整下输出时间的顺序,即按上 图将作用时间按顺序、的顺序输出。同样原理,将其他扇区的仿真模型搭建出 来,按照规律只讲输出的顺序调换一下就可以将作用时间构建出来。用同样的方法也 可以讲第二大扇区的计算时间模块搭建出来。下一步的工作就是根据的扇区位置选 择使用的作用时间,利用选择开关按照小扇区的作用顺序n在内部,大扇区的作用顺 序N在外部的原则,选择整个区域的作用时间。四、时间状态分配时间状态分配的目的是确定各个基本矢量对应的开关状态及作用次序,将基本矢量对 应的作用时间分配给相应的开关状态

8、,生成主电路开关器件的触发波形,完成对开关 器件的控制,是三电平SVPWM算法的关键部分。把负短矢量作为每个采样周期的起 始矢量,实现七段式时间分配,每个区域的基本矢量作用时间是、是按照以短 矢量为每个采样周期起始矢量的次序排列的,因此所有区域的七段式时间分配是一样 的,不同的是、的值。所以每个区域都可以用相同的七段式时间分配仿真模块。 七段式仿真模块不是将作用时间与开关状态对应,而是通过时间叠加产生含有与矢量 状态对应的时间信息的梯形波M,作为下一个矢量状态次序仿真模块的选择信号或分 配信号。根据状态的作用次序原则,每个采样周期以负短矢量作为起始矢量,以0, 1,2表示矢量状态n,o, p,

9、则表2为矢量状态次序仿真数据表中扇区一和二的次序。表2大扇区一和二的矢量状态次序表区域矢量状态次序11100 110 111 211 111 110 100I 2110 111 211 221 211 111 110I 3100 110 210 211 210 110 100I 4110 210 211 221 211 210 110I 5100 210 211 221 210 200 100I 6110 200 210 211 210 200 100III110 111 121 221 121 111 110II 2010 110 111 121 111 110 010II 3110 120

10、 121 221 121 120 110II4010 110 120 121 120 110 010II 5110 120 220 221 220 120 110II 6010 020 120 121 120 020 010矢量状态次序仿真模块是层层包含,逐层深入的结构,从里向外第一层是小区矢量状 态次序,第二层是大区内的小区选择,第三层是整个区域的矢量状态次序,模型特点 是大量使用SIMULINK的多路选择开关器件排列矢量状态次序和判断所在区域最后 进行状态的转换总结以上仿真模型,我们可以很得到总的仿真模型如下團5总的信真图仿真结果加入三电平逆变桥和永磁同步电动机后,测得输出线电压波形如下所

11、示。同步电机参 数如下:Rs=18.7,Ld=0.02682H,Lq=0.02682H,J=2.26e-5Kg.mA2,F=1.349e-5N.m.s,p=2, 负载在t=0.04s时加入转矩T=0.5。为了与两电平带永磁同步电机的输出特性曲线相比 较,加入两电平输出特性曲线如下,电机参数不变。仿真波形如下:1、线电压区别二电平输出BC两檢註电压波形两电平在0.04s后加入电磁转矩右的变化注:三电平的转矩脉动明显比两电平的要小3、THD含量Fundamental(50Hz)50.2, TH0=41.02%1201008060i0200.0200 WO 6008001000在该论文中用仿真软件完成了两电平电路于三电平电路进行比较,并分别引入永磁同 步电机,仿真比较结果如下:1、三电平的电磁转矩带有更少的脉动、2作用时间更 快3、三电平加入的直流电压的比两电平的小了一倍4、三电平输出的功率大,可以 使电动机更快的达到额定转速。最后使用Powergui进行了 FFt分析,三电平的THD 明显下降比两电平的要小,说明谐波含量降低。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号