第1讲 高斯求和

上传人:枫** 文档编号:508538190 上传时间:2023-08-25 格式:DOC 页数:47 大小:2.16MB
返回 下载 相关 举报
第1讲 高斯求和_第1页
第1页 / 共47页
第1讲 高斯求和_第2页
第2页 / 共47页
第1讲 高斯求和_第3页
第3页 / 共47页
第1讲 高斯求和_第4页
第4页 / 共47页
第1讲 高斯求和_第5页
第5页 / 共47页
点击查看更多>>
资源描述

《第1讲 高斯求和》由会员分享,可在线阅读,更多相关《第1讲 高斯求和(47页珍藏版)》请在金锄头文库上搜索。

1、第1讲 高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:123499100?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:110029939849525051。1100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为(1+100)10025050。小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等

2、差数列,后项与前项之差称为公差。例如:(1)1,2,3,4,5,100;(2)1,3,5,7,9,99;(3)8,15,22,29,36,71。其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)项数2。例1 1231999?分析与解:这串加数1,2,3,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得原式=(11999)199921999000。注意:利用等差数列求和公式之前,一定要判断题目中

3、的各个加数是否构成等差数列。例2 11121331?分析与解:这串加数11,12,13,31是等差数列,首项是11,末项是31,共有31-11121(项)。原式=(11+31)212=441。在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到项数=(末项-首项)公差+1,末项=首项+公差(项数-1)。例3 371199?分析与解:3,7,11,99是公差为4的等差数列,项数=(993)4125,原式=(399)2521275。例4 求首项是25,公差是3的等差数列的前40项的和。解:末项=253(40-1)142,和=(25142)4

4、023340。利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。练习11.计算下列各题:(1)246200; (2)17192139;(3)58111450; (4)3101724101。2.求首项是5,末项是93,公差是4的等差数列的和。3.求首项是13,公差是5的等差数列的前30项的和。4.时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。问:时钟一昼夜敲打多少次?5.求100以内除以3余2的所有数的和。6. 在所有的两位数中,十位数比个位数大的数共有多少个?第2讲 乘法原理让我们先看下面几个问题。例1马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋

5、,他每次出场演出都要戴一顶帽子、穿一双鞋。问:小丑的帽子和鞋共有几种不同搭配?分析与解:由下图可以看出,帽子和鞋共有6种搭配。事实上,小丑戴帽穿鞋是分两步进行的。第一步戴帽子,有3种方法;第二步穿鞋,有2种方法。对第一步的每种方法,第二步都有两种方法,所以不同的搭配共有326(种)。例2从甲地到乙地有2条路,从乙地到丙地有3条路,从丙地到丁地也有2条路。问:从甲地经乙、丙两地到丁地,共有多少种不同的走法?分析与解:用A1,A2表示从甲地到乙地的2条路,用B1,B2,B3表示从乙地到丙地的3条路,用C1,C2表示从丙地到丁地的2条路(见下页图)。共有下面12种走法:A1B1C1 A1B2C1 A

6、1B3C1A1B1C2 A1B2C A1B3C2A2B1C1 A2B2C1 A2B3C1A2B1C2 A2B2C2 A2B3C2事实上,从甲到丁是分三步走的。第一步甲到乙有2种方法,第二步乙到丙有3种方法,第3步丙到丁有2种方法。对于第一步的每种方法,第二步都有3种方法,所以从甲到丙有23=6(种)方法;对从甲到丙的每种方法,第三步都有2种方法,所以不同的走法共有23212(种)。以上两例用到的数学思想就是数学上的乘法原理。乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,做第2步有m2种方法做第n步有mn种方法,那么按照这样的步骤完成这件任务共有 Nm1m2mn种不同的方

7、法。从乘法原理可以看出:将完成一件任务分成几步做,是解决问题的关键,而这几步是完成这件任务缺一不可的。例3用数字0,1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复)?分析与解:组成一个三位数要分三步进行:第一步确定百位上的数字,除0以外有5种选法;第二步确定十位上的数字,因为数字可以重复,有6种选法;第三步确定个位上的数字,也有6种选法。根据乘法原理,可以组成三位数566180(个)。练习21. 有五顶不同的帽子,两件不同的上衣,三条不同的裤子。从中取出一顶帽子、一件上衣、一条裤子配成一套装束。问:有多少种不同的装束?2、用数字1、2、3、4这五个数字可以组成多少个没有重复数字的

8、三位数?如果组成(数字可以重复)三位数呢?如果用数字0、1、2、3、4、5呢?3、王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项比赛中的一项,问报名结果会出现多种不同的情形?4、幼儿园里的6名小朋友去坐3把不同的椅子,有多少种坐法?5、幼儿园里的3名小朋友去坐6把不同的椅子(每人只能坐一把椅子),有多少种坐法?6、有4个同学一起去郊游,照相时,必须有一名同学给其他3人拍照,共可能有多少种拍照情况?(照相时3人必须站成一排)7、由数字1、2、3、4、5可以组成多少个没有重复数字的三位数而且是偶数?8.甲组有6人,乙组有8人,丙组有9人。从三个组中各选一人参

9、加会议,共有多少种不同选法?第3讲 加法原理例1从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中火车有4班,汽车有3班,轮船有2班。问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?分析与解:一天中乘坐火车有4种走法,乘坐汽车有3种走法,乘坐轮船有2种走法,所以一天中从甲地到乙地共有:432=9(种)不同走法。例2旗杆上最多可以挂两面信号旗,现有红色、蓝色和黄色的信号旗各一面,如果用挂信号旗表示信号,最多能表示出多少种不同的信号?分析与解:根据挂信号旗的面数可以将信号分为两类。第一类是只挂一面信号旗,有红、黄、蓝3种;第二类是挂两面信号旗,有红黄、红蓝、黄蓝、黄红、蓝红、

10、蓝黄6种。所以一共可以表示出不同的信号36=9(种)。以上两例利用的数学思想就是加法原理。加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法 在第n类方法中有mn种不同方法,那么完成这件任务共有N=m1+m2+mn种不同的方法。乘法原理和加法原理是两个重要而常用的计数法则,在应用时一定要注意它们的区别。乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积;加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和。例3两次掷一枚骰子,两次出现的数字之

11、和为偶数的情况有多少种?分析与解:两次的数字之和是偶数可以分为两类,即两数都是奇数,或者两数都是偶数。因为骰子上有三个奇数,所以两数都是奇数的有33=9(种)情况;同理,两数都是偶数的也有9种情况。根据加法原理,两次出现的数字之和为偶数的情况有9918(种)。54322240(种)。再根据加法原理,不同的染色方法共有180240=420(种)。例4用1,2,3,4这四种数码组成五位数,数字可以重复,至少有连续三位是1的五位数有多少个?分析与解:将至少有连续三位数是1的五位数分成三类:连续五位是1、恰有连续四位是1、恰有连续三位是1。连续五位是1,只有11111一种;中任一个,所以有336(种)

12、;34433333(种)。由加法原理,这样的五位数共有163340(种)。在例4中,我们先将这种五位数分为三类,以后在某些类中又分了若干种情况,其中使用的都是加法原理。练习31.南京去上海可以乘火车、乘飞机、乘汽车和乘轮船。如果每天有20班火车、6班飞机、8班汽车和4班轮船,那么共有多少种不同的走法?2.光明小学四、五、六年级共订300份报纸,每个年级至少订99份报纸。问:共有多少种不同的订法?3.将10颗相同的珠子分成三份,共有多少种不同的分法?4.在所有的两位数中,两位数码之和是偶数的共有多少个?第15讲 孙子问题与逐步约束法在古书孙子算经中有一道题:“今有物不知其数,三三数之剩二,五五数

13、之剩三,七七数之剩二,问物几何?”意思是:有一堆物品,三个三个数剩两个,五个五个数剩三个,七个七个数剩两个。求这堆物品的个数。我们称这类问题为孙子问题。例1 一个数除以3余2,除以5余3,除以7余2。求满足条件的最小自然数。分析与解:这道例题就是孙子算经中的问题。这个问题有三个条件,一下子不好解答。那么,我们能不能通过先求出满足其中一个条件的数,然后再逐步增加条件,达到最终解决问题的目的呢?我们试试看。满足“除以3余2”的数,有2,5,8,11,14,17,在上面的数中再找满足“除以5余3”的数,可以找到8,8是同时满足“除以3余2”、“除以5余3”两个条件的数,容易知道,8再加上3与5的公倍

14、数,仍然满足这两个条件,所以满足这两个条件的数有8,23,38,53,68,在上面的数中再找满足“除以7余2”的数,可以找到23,23是同时满足“除以3余2”、“除以5余3”、“除以7余2”三个条件的数。23再加上或减去3,5,7的公倍数,仍然满足这三个条件,3,5,7=105,因为23105,所以满足这三个条件的最小自然数是23。在例1中,若找到的数大于3,5,7,则应当用找到的数减去3,5,7的倍数,使得差小于3,5,7,这个差即为所求的最小自然数。例2 求满足除以5余1,除以7余3,除以8余5的最小的自然数。分析与解:与例1类似,先求出满足“除以5余1”的数,有6,11,16,21,26,31,36,在上面的数中,再找满足“除以7余3”的数,可以找到31。同时满足“除以5余1”、“除以7余3”的数,彼此之间相差57=35的倍数,有31,66,101,136,171,206,在上面的数中,再找满足“除以8余5”的数,可以找到101。因为1015,7,8=280,所以所求的最小自然数是101。在例1、例2

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号