工业机器人机械系统设计

上传人:汽*** 文档编号:508462620 上传时间:2023-04-07 格式:DOCX 页数:8 大小:125.51KB
返回 下载 相关 举报
工业机器人机械系统设计_第1页
第1页 / 共8页
工业机器人机械系统设计_第2页
第2页 / 共8页
工业机器人机械系统设计_第3页
第3页 / 共8页
工业机器人机械系统设计_第4页
第4页 / 共8页
工业机器人机械系统设计_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《工业机器人机械系统设计》由会员分享,可在线阅读,更多相关《工业机器人机械系统设计(8页珍藏版)》请在金锄头文库上搜索。

1、编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第1页 共1页工业机器人机械系统设计机器人技术是利用计算机的记忆功能、编程功能来控制操作机自动完成工业生产中某一类指定任务的高新技术,是当今各国竞相发展的高技术内容之一。它是综合了当代机构运动学与动力学、精密机械设计发展起来的产物,是典型的机电一体化产品,工业机器人由操作机和控制器两大部分组成。操作机按计算机指令运动,可实现无人操作;控制器中计算机程序可依加工对象不同而从新设计,从而满足柔性生产的需要。 机器人应用领域广泛,包括建筑、医疗、采矿、核能、农牧渔业、航空航天、水下作业、救火、环境卫生、教育、娱乐、办公、家用、军用等方

2、面,工业机器人在国内主要应用于危险、有毒、有害的工作环境以及产品质量要求高(超洁、同一性)的重复性作业场合,如焊接、喷涂上下料、插件、防爆等。一、 工业机器人的总体设计1主体结构设计工业机器人主体结构设计的主要问题是选择由连杆件和运动副组成的坐标形式。工业机器人的坐标形式主要有直角坐标式、圆柱坐标式、球面坐标式、关节坐标式等。直角坐标式机器人主要用于生产设备的上下料,也可用于高精度的装配和检测作业。圆柱坐标式机器人主要有三个自由度:腰转,升降,手臂伸缩。手腕常采用两个自由度,绕手臂纵向轴转动与垂直的水平轴线转动。手腕若采用三个自由度,机器人总自由度达到六个。球面坐标式机器人也叫极坐标式机器人,

3、具有较大的工作范围,设计和控制系统比较复杂。关节坐标式主体结构的三个自由度腰转关节、肩关节、肘关节全部是转动关节,手腕的三个自由度上的转动关节(俯仰、偏转和翻转)用来最后确定末端操作器的姿态,它是一种惯犯使用的拟人化的机器人。6自由度机器人6自由度机器人Cobra Series 桌面机器人Reach:600mm/800mmPayload:5.5kgRepeatability:0.02mmWeight:34/35kgDesingn Life:60 Million CyclesSmartModules 框架机器人Mas Stroke:2000mmMin Stroke:130mmNumber of

4、Axis:1 to 3Max Payload:60kgMax speed:1200mm/secRepeatability:0.01mmDesign Life:5000kmCartesian RobotsSize:600*450mmPayload:5.5kgAccuracy:0.025mmWeight:54kgDesign Life:5000km直角坐标机器人工作台:2传动方式传动方式选择是指选择驱动源及传动装置与关节部件的连接形式和驱动形式,主要包括:直接连接传动。驱动源或带有机械传动装置直接与关节相连。远距离连接传动。驱动源通过远距离机械传动后与关节相连。间接驱动。驱动源经一个速比远大于1的

5、机械装置与关节相连。直接传动。驱动源不经过中间环节或经过一个速比等于1的机械传动这样的中间环节与关节相连。3模块化结构设计模块化机器人是有一些标准化、系列化的模块件通过具有特殊功能的结合部用积木拼接的方式组成一个工业机器人系统。模块化设计是指基本模块设计和结合部设计。模块化工业机器人主要的特点是:经济性、灵活性4材料的选择与一般机械设备相比,机器人结构的动力特性是十分重要的,这是材料选择的出发点。材料选择的基本要求是:强度高、弹性模量大、重量轻、阻尼大、材料价格低。5平衡系统设计工业机器人是一个多刚体耦合系统,系统的平衡性是极其重要的,在工业中采用平衡系统的理由是:安全、借助平衡系统能降低因机

6、器人结构变化而导致重力引起关节驱动力矩变化的峰值、借助平衡系统能降低因机器人运动而导致惯性力矩引起关节驱动力矩变化的峰值、借助平衡系统能减少动力学方程中内部耦合项和非线性项,改进机器人动力特性、借助平衡系统能减小机械臂结构柔性所引起的不良影响、借助平衡系统能使机器人运行稳定,降低地面安装要求。二、传动部件设计 传动部件是驱动源和机器人各个关节连接的桥梁,是工业机器人的重要部件。机器人的运动速度、加速度(减速度)特性、运动平稳性、精度、承载能力很大程度上是取决于传动部件设计的合理性和优劣。因此,关节传动部件的设计是工业机器人设计的关键之一。(一)移动关节导轨工业机器人对移动导轨的要求 移动关节导

7、轨的目的是在运动过程中保证位置精度和导向,对移动导轨有如下要求:1 间隙小或者能消除间隙;2 再垂直于运动方向上的刚度高;3 摩擦系数低并不随速度变化;4 高阻尼;5 移动导轨和其辅助元件尺寸小、惯量低。移动关节导轨主要分类:普通滑动导轨、液压动压滑动导轨、液压静压滑动导轨、气浮导轨和滚动导轨。上面介绍的导轨中,前两种具有结果结构简单、成本低的特点,但是必须有间隙以便润滑,但是间隙的存在又将会引起坐标的变化和有效负载的变化,在低速时候容易产生爬行现象。第三种静压滑动导轨结构能产生预载荷,能完全消除间隙,具有高刚度、低摩擦、高阻尼等优点,但是它需要单独的液压系统和回收润滑油的机构。第四种气浮导轨

8、不需要回收润滑油的机构,但是刚度和阻尼较低。第五种滚动导轨在工业机器人导轨种用的是最广泛,具有很多的优点 :1摩擦小,特别是不随速度变化;2尺寸小;3刚度高承载能力大;4精度和精度保持度高;5润滑简单;6容易制造成标准件;7易加预载,消除间隙,增加刚度等等。但是,滚动导轨用在机器人机械系统也存在着缺点:1阻尼低;2对脏物比较敏感.(二)转动关节轴承转动关节轴承主要用的是球轴承,它能承受轴向和径向载荷,摩擦较小,对轴和轴承座的刚度不敏感。主要分向心推力球轴承和“四点接触”球轴承。(三).传动件的定位及消隙传动件的定位主要有:1 电气开关定位2 机械挡块定位3 伺服定位系统定位传动件的消隙主要有:

9、1 消隙齿轮2 柔性齿轮消隙3 对称传动消隙4 偏心机构消隙5 齿廓弹性覆层消隙(四) 协波传动要求: 伺运动精度高,间隙小,能实现较高的重复定位精度。 回转速度稳定,无波动,运动副键摩擦小,效率高。 体积小,重量轻,传动扭矩大。常用的减速机构是行星齿轮机构和谐波传动机构(五).丝杠螺母副和滚珠丝杠传动丝杠传动机构是将旋转运动变成直线运动的重要传动部件,其优点是不会产生冲击,传动平稳,无噪声,能自锁,由较小的扭矩产生较大的牵引力;缺点是传动效率底下。采用滚珠丝杠传动则能解决这种问题,并且传动精度和定位精度都很高,在传动时灵敏和平稳性很好,磨损小,使用寿命比较长。 活塞缸和齿轮齿条机构 链传动,

10、皮带传动,绳传动 钢带传动三、臂部设计工业机器人臂部设计的基本要求:刚度高。为了防止臂部在运动过程中产生过大的变形,手臂的截面形状要合理选择。工字形截面弯曲刚度一般比截面大;空心管的弯曲刚度和扭转刚度都比实心轴大得多,所以常用钢管作臂杆及导向杆,用工字钢和槽钢作支撑板。导向性好。为防止手臂在直线运动中,沿运动轴线发生相对转动,或设置导向装置,或设计方形,花键等形式的臂杆。重量轻。为提高机器人的运动速度,要尽量减小臂部运动部分的重量,以减小整个手臂对回转轴的转动惯量。运动平稳定位精度高。除了臂部设计上要求力求结构紧凑,重量轻外,同时要采用一定形式的缓冲措施。常用的臂部结构有:1手部直线运动机构;

11、机器人手臂的伸缩,横向移动均属于直线运动。实现手臂往复直线运动的机构形式比较多,常用的有活塞油(气)缸,齿轮齿条机构,丝杠螺母机构以及连杆机构等。由于活塞(气)缸的体积小,重量轻,因而在机器人结构中应用的比较多。 手臂回转运动机构实现机器人手臂回转运动的机构形式是多样的,常用的有叶片式回转缸,齿轮传动机构,链轮传动机构,活塞缸和连杆机构等。 一类新颖的致动设备(例如致动器、发动机、发电机等)正在步入商业化。它们基于在受到电刺激时会改变形状的聚合物。 数十年前,构建致动器或者致动设备的工程师就已经为肌肉找到了一种人造替代物。作为对神经刺激的响应,肌肉只须改变长度就能够准确地控制其施加的力量,例如

12、眨眼睛或举起杠铃。同时,肌肉还表现出比例恒定的属性:对于各种尺寸大小的肌肉,其机理都一样,相同的肌肉组织既可以给昆虫、也能够为大象赋予力量。因此,对于难以制作电动马达的驱动设备,某种类似肌肉的东西也许会有用武之地。 EPAs号称要成为未来的人造肌肉。研究人员已经在雄心勃勃地工作,希望能够为许多当代的技术寻找基于EPA的可选方案,而且不害怕将他们的发明物与自然物竞争。几年前,有几个人,包括来自美国加州帕萨迪纳喷气推进实验室(JPL)的高级科学家Yoseph Bar-Cohen,向电活化聚合物研究团体发起了一项挑战,以激发人们对该领域的兴趣:展开一项竞赛,看谁能够最先制造出EAP驱动的机器人手臂,

13、而且必须在与人的手臂的一对一掰手腕比赛中取胜。在压电材料中,机械应力可导致晶体电极化,而且反之亦然。用电流刺激这种材料将使其变形;通过改变其形状可以产生电。 塑料对电的反应 响应电流而改变形状的聚合物可分为两类:离子型和电子型,其优势和劣势正好互补。 离子型EAPs(包括离子聚合物凝胶体、离子性高分子如金属复合材料、导电性高分子以及碳纳米管)是在电化学的基础上工作即正负离子的移 动和扩散。它们可以直接用电池带动,因为即便一个个位(single-digit)电压也能够使它们大幅度弯曲。不足之处在于,离子型EAPs通常必须是湿的,因此应当密封在挠性薄层中。许多离子型EAPs的另一个主要缺陷在于只要

14、电流接通,该材料就会一直运动,如果电压超过一定值,将会产生电解,从而给材料造成无法修复的损坏。相反,电子型EAPs(例如铁电聚合物、电介体、电绝缘橡胶以及电致伸缩移植橡胶)则由电场驱动。它们需要相对较高的电压,因此会产生让人不舒服的电击。但是,作为回报,电子型EPAs能够迅速作出响应,并且传递较强的机械力。它们不需要保护薄层,而且几乎不需要电流就能够保持某个定位。 SPR的人造肌肉材料属于电子型EAP类型。它的成功开发经历了漫长曲折的道路,而且多少带有一些偶然性,可以称得上是奇思怪想式技术创新的一个经典范例。 四、机身及行走机构设计人的下肢主要功能是承受体重和走路。对于静止直立时支承体重这一要

15、求,机器人还容易做到,而在像人那样用两足交替行走时,平衡体重就存在着相当复杂的技术问题了。首先让我们分析一下人的步行情况。走路时,人的重心是在变动的,人的重心在垂直方向上时而升高,时而下降;在水平方向上亦随着左。右脚交替着地而相对应地左、右摇动。人的重心变动的大小是随人腿迈步的大小、速度而变化的。当重心发生变化时,若不及时调整姿势,人就会因失去平衡而跌倒。人在运动时,内耳的平衡器官能感受到变化的情况,继而通知人的大脑及时调动人体其他部分的肌肉运动,巧妙地保持人体的平衡.而人能在不同路面条件下(包括登高、下坡、高低不平、软硬不一的地面等)走路,是因为人能通过眼睛来观察地面的情况,最后由大脑来决策走路的方法,指挥有关肌肉的动作。从而可以看出,要使机器人能像人一样,在重心不断变化的情况下仍能稳定的步行,那是困难的。同简化人手功能制造机器人的上肢的方法一样,其下肢没有必要按照人的样式全盘模仿。只要能达到移动的目的,我们可以采取多种形式:用足走路是一种形式,还可以像汽车、坦克那样用车轮或履带(以滚动的方式)来移动。如何正确引导机器人的移动:

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > PPT模板库 > 总结/计划/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号