质粒提取简介及问题分析优选材料

上传人:工**** 文档编号:508298843 上传时间:2023-02-01 格式:DOC 页数:6 大小:66.50KB
返回 下载 相关 举报
质粒提取简介及问题分析优选材料_第1页
第1页 / 共6页
质粒提取简介及问题分析优选材料_第2页
第2页 / 共6页
质粒提取简介及问题分析优选材料_第3页
第3页 / 共6页
质粒提取简介及问题分析优选材料_第4页
第4页 / 共6页
质粒提取简介及问题分析优选材料_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《质粒提取简介及问题分析优选材料》由会员分享,可在线阅读,更多相关《质粒提取简介及问题分析优选材料(6页珍藏版)》请在金锄头文库上搜索。

1、质粒提取简介及问题分析一、导论(一) 质粒提取的原理:为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液:溶液I,50 mM葡萄糖,25 mM Tris-HCl,10 mM EDTA,pH 8.0; 溶液II,0.2 N NaOH,1% SDS;溶液III,3 M 醋酸钾,2 M 醋酸。 让我们先来看看溶液I的作用。任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-HCl溶液,是再自然不过的了。那么50 mM葡萄糖是干什么的呢?加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言几乎没有任何影响

2、,所以说溶液I中葡萄糖是可缺的。EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达 10 mM 的EDTA,就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果手上正好缺了溶液I,可不可以抽质粒呢?只要用等体积的水或LB培养基来悬浮菌体就可以了。有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。 轮到溶液II了。这是用新鲜的0.4 N的NaOH和2%的SD

3、S等体积混合后使用的。要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。很多人对NaOH

4、的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。基因组DNA的断裂会带来麻烦。溶液III加入后就会有大量的沉淀,但大部分人却不明白沉淀的本质。最容易产生的误解是,当SDS碰到酸性后发生的沉淀。如果这样怀疑,往1%的SDS溶液中加2M醋酸溶液看看就知道不是这么回事了。大量沉淀的出现显然与SDS

5、的加入有关系。如果在溶液II中不加SDS,也会有少量沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(SDS)遇到钾离子后变成了十二烷基硫酸钾(PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的钠离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。大家知道SDS专

6、门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结合。(二)细菌的收获和裂解。细菌的收获可通过离心来进行,而细菌的裂解则可以采用多种方法中的任意一种,这些方法包括用非离子型或离子型去污剂、有机溶剂或碱进行处理及用加热处理等。选择哪一种方法取决于3个因素:质粒的大小、小肠杆菌菌株及裂解后用于纯化质粒DNA的技术。 尽管针对质粒和宿主的每一种组合分别提出精确的裂解条件不切实际

7、,但仍可据下述一般准则来选择适当方法,以取得满意的结果。1、大质粒(大于15kb)容易受损,故应采用漫和裂解法从细胞中释放出来。将细菌悬于蔗糖等渗溶液中,然后用溶菌酶和EDTA进生处理,破坏细胞壁和细胞外膜,再加入SDS一类去污剂溶解球形体。这种方法最大限度地减小了从具有正压的细菌内部把质粒释放出来所需要的作用力。2、可用更剧烈的方法来分离小质粒。在加入EDTA后,有时还在加入溶菌酶后让细菌暴露于去污剂,通过煮沸或碱处理使之裂解。这些处理可破坏碱基配对,故可使宿主的线状染色体DNA变性,但闭环质粒DNA链由于处于拓扑缠绕状态而不能彼此分开。当条件恢复正常时,质粒DNA链迅速得到准确配置,重新形

8、成完全天然的超螺旋分子。3、一些大肠杆菌菌株(如HB101的一些变种衍生株) 用去污剂或加热裂解时可释放相对大量的糖类,当随后用氯化铯-溴化乙锭梯度平衡离心进行质粒纯化时它们会惹出麻烦。糖类会在梯度中紧靠超螺旋质粒DNA所占位置形成一致密的、模糊的区带。因此很难避免质粒DNA内污染有糖类,而糖类可抑制多种限制酶的活性。 故从诸 如HB101和TG1等大肠杆菌蓖株中大量制备质粒时,不宜使用煮沸法。4、当从表达内切核酸酶A的大肠杆菌菌株(endA 株,如HB101) 中小量制备质粒时,建议不使用煮沸法。因为煮沸不能完全灭活内切核酸酶A,以后在温育(如用限制酶消化)时,质粒DNA会被降解。但如果通过

9、一个附加步骤(用酚:氯仿进行抽提)可以避免此问题。5、目前这一代质粒的拷贝数都非常高,以致于不需要用氯霉素进行选择性扩增就可获得高产。然而,某些工作者沿用氯霉素并不是要增加质粒DNA的产量,而是要降低细菌细胞在用于大量制备的溶液中所占体积。大量高度粘稠的浓缩细菌裂解物,处理起来煞为费事,而在对数中期在增减物中加入氯霉素可以避免这种现象。有氯霉素存在时从较少量细胞获得的质粒DNA的量以与不加氯霉素时从较大量细胞所得到的质粒DNA的量大致相等。(三)质粒DNA的纯化。常用的纯化方法都利用了质粒DNA 相对较小及共价闭合环状这样两个性质。如,用氯化铯-溴化乙锭梯度平衡离心分离质粒和染色体DNA 就取

10、决于溴化乙锭与线状以及与闭环DNA分子的结合量有所不同。 溴化乙锭通过嵌入碱基之间而与DNA结合,进而使双螺旋解旋。由此导致线状DNA的长度有所增加,作为补偿,将在闭环质粒DNA中引入超螺旋单位。最后,超螺旋度大为增加, 从而阻止了溴化乙锭分了的继续嵌入。但线状分子不受此限,可继续结合更多的染料,直至达到饱和(每2个碱基对大约结合1个溴化乙锭分子)。由于染料的结合量有所差别,线状和闭环DNA分了在含有饱和量溴化乙锭的氯化铯度中的浮力密度也有所不同。多年来,氯化铯-溴化乙锭梯度平衡离心已成为制备大量质粒DNA 的首选方法。然而该过程既昂贵又费时,为此发展了许多替代方法。其中主要包括利用离子交换层

11、析、凝胶过滤层析、分级沉淀等分离质粒DNA和宿主DNA的方法。二、质粒DNA的小量制备(一)细菌的收获和裂解。1、收获。1) 将2ml含相应抗生素的LB加入到容量为15ml 并通气良好(不盖紧)的试管中,然后接入一单菌落,于30剧烈振摇下培养过夜。2) 将1.5ml培养物倒入离心管中,4、12000g离心30秒,将剩余的培养物贮存于4。3) 吸去培养液,使细菌沉淀尽可能干燥。2、碱法裂解。1) 将细菌沉淀,所得重悬于100l用冰预冷的溶液I中,剧烈振荡。溶液I可成批配制,高压下蒸气灭菌15分钟,贮存于4。须确使细菌沉淀在溶液I中完全分散。2) 加200l新配制的溶液。盖紧管口,快速颠倒离心管5

12、次,以混合内容物。应确保离心管的整个内表面均与溶液接触。不要振荡,将离心管放置于冰上。3) 加150l用冰预冷的溶液。盖紧管口,将管倒置后温和地振荡10秒钟溶液在粘稠的细菌裂解物中分散均匀,之后将管置于冰上3-5分钟。4) 用离心机于4、12000g离心5分种,将上清转移到另一离心管中。5) 可做可不做:加等量酚:氯念,振荡混匀, 用微量离心机于4 以12000g离心 2分钟,将上清转移到另一良心管中。有些工作者认为不必用酚:氯仿进行抽提,然而由于一些未知的原因,省略这一步,往往会得到可耐受限制酶切反应的DNA。6) 用2倍体积的乙醇于室温沉淀双锭DNA。振荡混合, 于室温放置2分钟。7) 用

13、微量离心机于4以12 000g离心5分钟。8) 小心吸去上清液,将离心管倒置于一张纸巾上,以使所有液体流出。再将附于管壁的液滴除尽。9) 用1ml70%乙醇于4洗涤双链DNA沉淀,去掉上清,在空气中使核酸沉淀干燥10分钟。i. 此法制备的高拷贝数质粒(如Xf3或pUC),其产量一般约为:每毫升原细菌培养物3-5g。ii. 如果要通过限制酶切割反应来分析DNA,可取1l DNA溶液加到另一含8l水的微量离心管内,加1l 10限制酶缓冲液和1单位所需限制酶, 在适宜温育1-2小时。将剩余的DNA贮存于-20。iii. 此方法按适当比例放大可适用于100ml细菌培养物:。3、煮沸裂解。1) 将细菌沉

14、淀,所得重悬于350lSTET中。STET:0.1mol/L NaCL,10mmol/L Tris.Cl(pH8.0),1mmol/L EDTA(pH8.0),5% Triton X-100。2) 加25l新配制的溶菌酶溶液10mg/ml,用10mmol/L Tris.Cl(pH8.0)配制,振荡3秒钟以混匀之。如果溶淮中pH低于8.0,溶菌酶就不能有效发挥作用。3) 将离心管放入煮沸的水浴中,时间恰为40秒。4) 用微量离心机于室温以12000g离心10分种。5) 用无菌牙签从微量离心管中去除细菌碎片。6) 在上清中加入40l 5mol/L乙酸钠(pH5.2)和420l异丙醇,振荡混匀,于室

15、温放置5分钟。7) 用微量离心机于4以12 000g离心5分种,回收核酸沉淀。8) 小心吸去上清液,将离心管倒置于一张纸巾上,以使所有液体流出。再将附于管壁的液滴除尽。除去上清的简便方法是用一次性使用的吸头与真空管道相连,轻缓抽吸,并用吸头接触液面。当液体从管中吸出时,尽可能使吸头远离核酸沉淀,然后继续用吸头通过抽真空除去附于管的液滴。9) 加1ml 70%乙醇,于4以12 000g离心2分钟。10)按步骤8)所述再次轻轻地吸去上清,这一步操作要格外小心,因为有时沉淀块贴壁不紧,去除管壁上形成的所有乙醇液滴,打开管口,放于室温直至乙醇挥发殆尽,管内无可见的液体(2-5)分钟。 11)用50l含

16、无DNA酶的胰RNA酶(20g/ml)的TE(pH8.0)溶解核酸稍加振荡,贮存于-20。 注:当从表达内切核酸酶A的大肠杆菌株(endA 株,如HB101 )中小量制粒尤其DNA时,建议舍弃煮沸法。因为煮沸步骤不能完全灭活内切核酸酶A,以后在Mg 2 存在下温育(V中用限制酶时)质粒DNA可被降解。 在上述方案的步骤9)之间增加一步,即用酚:氯仿进行抽提,可以避免这一问题。(二) 质粒DNA小量制备的问题与对策。碱裂解和煮沸都极其可靠,重复性也很好,而且一般没有什么麻烦。多年来,在我们实验室中日常使用这两种方法的过程中,只碰到过两个问题:1、有些工作者首次进行小量制备时,有时会发现质粒DNA不能被限制酶所切割,这几乎总是由于从细菌沉淀或从核酸沉淀中去除所有上清液时注意得不够。大多数情况下,用酚:氯仿对溶液进行抽提

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号