《射频ADS微波HFSS相关 微波实验二 微带传输线》由会员分享,可在线阅读,更多相关《射频ADS微波HFSS相关 微波实验二 微带传输线(9页珍藏版)》请在金锄头文库上搜索。
1、实验二 微带传输线实验一 实验目的1. 了解微带传输线的基本理论和特性。2. 掌握用网络分析仪测量微带传输线接不同负载时工作参量的值3. 通过测量认知 1/4 波长传输线阻抗变换特性。二 实验原理1. 微带传输线的基本原理微带线目前是混合微波集成电路和单片微波集成电路使用最多的一种平面 型传输线。它可用作光刻程序制作,且容易与其它无源微波电路和有源微波电路 器件集成,实现微波部件和系统的集成化。微带线可以看作是由双导线传输线演变而成的,如图 21 所示。在两根导 线之间插入极薄的理想导体平板,它并不影响原来的场分布,而去掉板下的一根 导线,并将留下的另一根导线“压扁”,即构成了微带传输线。实际
2、的微带线结 构如图2 1所示。导体带(其宽度为w,厚度为t)和接地板均由导电良好的金 属材料(如银,铜,金)构成,导体带与接地板之间填充以介质基片,导体带与 接地板的间距为 h 。有时为了能使导体带,接地板与介质基片牢固地结合在一 起,还要使用一些黏附性较好的铬,钽等材料。介质基片应采用损耗小,黏附性, 均匀性和热传导性较好的材料,并要求其介电常数随频率和温度的变化也较小。图 21 双导线演变成微带线图 22 微带线的结构及其场分布2. 微带线的技术参数2.1 特性阻抗若微带线是被一种相对介电常数为e的均匀介质所完全包围着,并把准TEMr模当作纯TEM模看待,并设L和C分别为微带线单位长度上的
3、电感和电容,则特性阻抗为iT 1z =-c C v Cp相速 v 为p卡r但实际上的微带线是含有介质和空气的混合介质系统,因此不能直接套用上面的公式求特性阻抗。为了求出实际的微带线的特性阻抗z和相速度v,而引 cp入了等效相对介电常数的概念。如果微带线的结构现状和尺寸不变,当它被单一 的空气介质所包围着时,其分布电容为C。实际微带线是由空气和相对介电常0数为e的介质所填充,它的电容为C,那么,等效相对介电常数E的定义为r1re& =re这样,实际微带线的特性阻抗即可表示为z0zCc rez 0为在同样形状和结构尺寸的情况下,填充介质全部是空气时微带线的特性阻 c抗z01cv C00我们假定已成
4、形的导体的厚度t与基片厚度h相比可以忽略h( t h 0.005 )。这种情况下,我们能够利用只与线路尺寸(w和h)和介电常数*有关的经验公 r式。对于窄带微带线当 w/h 1时,我们必须采用不同的特性阻抗表达式:120皿h6+ (1-)w+ 2.42 - 0.44 h为了求出填充其他介质时微带线的特性阻抗 z ,还应知道等效相对介电常c数 * 。其表达式即:re*re* 1r十2* (1r2(1+巴) 1/22.2 相速度和波导波长由于微带传输线是具有混合介质系统的传输线,因此,它的相速度为:v 0re式中,V。为自由空间中电磁波的速度;* 为相对有效介电常数。 re微带传输线的波导波长九为
5、gre式中叫为自由空间中的波长。2.3 电压反射系数电压反射系数0,它表示反射与入射电压波之比:VZL+Z0ZL为负载Z0为传输线特性阻抗。2.4 驻波为了量化失配度,一般习惯于引入驻波比(SWR), SWR是最大电压(或电流)与最小电压(或电流)之比,其表达式为:1 + rSWR =01r03. 特殊的终端条件3.1端接负载无耗传输线的输入阻抗通过变换,可以得到最终形式的终端有载传输线的输入阻抗:Z + jZ tan(卩d)Z (d) = Z lo-加0 Z 0 + jZ厶 tan(卩 d)我们可以利用上式分析负载阻抗Z沿着特性阻抗Z,长度为d的传输线是 L0如何变换的,它已通过波数B考虑到
6、了工作频率的影响,B能用频率和相速度或者波长表示,它们分别是卩=(2砒)/v和卩=2兀/九。p=nd=I0图 23 传输线示意图3.2短路传输线:假如Z = 0 (负载相当于短路线),输入阻抗表达式可表示为:LZ (d) = jZ0tan( 0 d)in 0我们注意到阻抗随着负载的距离增加而周期性变化。d = 0阻抗等于负载阻 抗,其值为零,随着距离d的增加,线路的阻抗为纯虚数,而数值随着增加。在 此所在位置阻抗为正,表示线路呈现电感特性。当d达到1 /4波长时,阻抗等于 无穷大,这代表开路线情况。进一步增大距离,出现负的虚阻抗,它等效为电容 特性。当d二九/2时阻抗变为零,而当d八/2时则又
7、重复一个新的周期。3.3开路传输线:假如Z T8,输入阻抗简化为:LZ (d) = -jZ C0t(卩d)in 0可以看到,开路传输线的输入阻抗也是随着负载的距离增加而周期性变化 的。类似于短路传输线,也可以对开路传输线进行周期性分析。3.4 1/4波长传输线:假如传输线是匹配的,Z二Z,可以看出,Z (d) = Z与线长无关。当L 0 in 0d二九/2 或者更普遍的d =九/2 + m(九/2), m = 1,2,.时,即z2k X-L + j 0tan(亍 *2)-(d = X /2) = 一2X =in02兀 九L0 + j厶他(可=)换句话说,假如传输线的长度正好等于半波长,则输入阻
8、抗等于负载阻抗 而与特性阻抗Z0无关。我们将传输线的长度缩短到d二九/4 或d =九/4 + m(九/4), m = 1,2,.,可得:L + jz 0tan(2 4) Z 2乙(d = X /4) = z02_ I =in02兀,九 -0 + jLtan(可行)L通过这一特性,可以通过选择线段,使一个实数负载阻抗与一个所希望的实数输 入阻抗匹配,传输线的特性阻抗等于负载和输入阻抗的几何平均值。Z0ZLZin由图I看出此处Zn和Zl是已知阻抗而Z 0是由上式决定的。三 实验设备及装置图本实验主要是通过使用矢量网络分析仪 AV3620 测量微带传输线的特性参数。本实验所用的微带传输线模块板材 =
9、 4.8,板材厚度h二1mm,传输线长度r1 = 10.5mm,线宽w二1.764mm,铜箔厚度t二0.02mm。连接图如下,将网络分 析仪的1端口接到微带传输线模块的输入端口,将微带传输线模块的输出端口接 上转接头,以便实验时接不同的负载。四 实验内容及步骤使用网络分析仪观察和测量微带传输线的特性参数。测量1 /4波长传输线在不同负载情况下的频率、输入阻抗、驻波比、反射系 数。 观察1/4波长传输线的阻抗变换特性。步骤一 调用误差校准后的系统状态步骤二 选择测量参数设置频率范围:设置起始频率为 100M;设置终止频率为 400M。设置源功率:将功率电平设置为一25dB。步骤三 连接待测件进行
10、测量 按照装置图连接待测器件; 将接有转接头的传输线空载,此时Z Ta,是开路传输线。将显示格式L设置为SMITH CHART,调出光标,调节频率,使光标在圆图的短路点(记录数据 时光标始终不变)。 记录此时的频率和输入阻抗。然后将显示格式设置为SWR,记录下此时 的驻波比值。选择测量S,记录下此时的S (反射系数)值。11 11 将短路/匹配负载模块接在转接头上,将拨码开关的拨码2拨到“ON”端 (拨码 1 不起控制作用,在任意一端都可以),此时,短路/匹配负载模块处于短路状态。将显示格式设置为SMITH CHART,注意观察光标的位置(此时光标所示 频率仍为中的频率)。此时光标在圆图中开路点附近。 调节光标至圆图中的开路点,按照中所示方法和步骤记录数据。 将短路/匹配负载模块的拨码开关的拨码 2 拨到“2”端,此时,短路/ 匹配负载模块是匹配负载状态。将显示格式设置为SMITH CHART,将光标调节至 最靠近圆图圆心的位置。 按照中方法和步骤记录数据。五 结果分析和实验报告1. 实验目的、内容;2. 步骤简述,记录有关数据;3. 对记录的数据进行分析,并思考为什么开路负载时在短路点的光标,在接上 短路负载后会在开路点附近。