《2013年高考复习导数一轮导学案》由会员分享,可在线阅读,更多相关《2013年高考复习导数一轮导学案(4页珍藏版)》请在金锄头文库上搜索。
1、 精编原创教案 导数与函数单调性一、回顾: 将函数的图象向左平移个单位,得到函数的图象,则是 (写出一个即可)二、0812年江苏数学命题研究及13年走势分析2012年江苏省高考说明中,导数及其应用属于必做题部分,其中导数的概念是A级要求,导数的几何意义,导数的运算,利用导数研究函数的单调性与极值,以及导数在实际问题中的应用是B级要求.导数与函数、数列、三角、不等式、解析几何等知识有着密切的联系,导数作为工具在研究函数的性质及在实际生活中有着广泛的应用, 导数是高中数学中与高等数学联系最密切的知识之一,所以备受高考命题老师的重视.2008年14题考查 导数在函数单调性的综合运用2009年03题考
2、查 导数研究函数单调性2010年14题考查 导数研究函数性质2011年12题考查 指数函数、导数的几何意义 2012年考查 导数研究函数零点导数 导数作为新增内容应为考查的重点内容。利用导数刻划函数,或已知函数性质求参数范围等,2008年江苏考了一道“导数应用题”,理科加试考了“导数与定积分混合型”题,2009年未考大题。那么2013年仍应重视导数题的考查,以中档题为主。小题中两年都考了三次函数,应该更加关注指、对数函数,三角函数的导数及相关的超越函数.三、知识点梳理:函数单调性:函数单调性的判定方法:设函数在某个区间内可导,如果0,则为增函数;如果0,则为减函数.常数的判定方法;如果函数在区
3、间内恒有=0,则为常数.注:0是f(x)递增的充分条件,但不是必要条件,如在上并不是都有0,有一个点例外即x=0时 = 0,同样0是f(x)递减的充分非必要条件.一般地,如果在某区间内有限个点处为零,在其余各点均为正(或负),那么f(x)在该区间上仍旧是单调增(或单调减)的.经典体验:1.【07广东12】函数的单调递增区间是 . 2.函数上的最小值是 . 3.函数在区间0,上的最大值是 . 经典讲练:例:1.【2010拉萨中学月考】函数在定义域()内可导,其图象如图所示,记的导函数为,则不等式的解集为_ _2.【靖江六校2011一调】7.已知函数在定义域上可导,的图像如图,记的导函数,则不等式
4、的解集是 _ _ _.3.【聊城一中文科】10定义在R上的函数满为的导函数,已知函数的图象如图所示.若两正数满足,则的取值范围是 .例:2(2001年天津卷)是上的偶函数。(I)求的值;(II)证明在上是增函数。变式练习1.已知函数.(1)讨论函数的单调性; (2)证明:若,则对任意 ,有.变式练习2求下列函数的最值.1.;2.,例:3【2010黄冈中学】若函数在其定义域内的一个子区间内不是单调函数,则实数k 的取值范围是 .变式练习1【温州十校联合理】22已知函数上是增函数.(I)求实数a的取值范围;所以变式练习2【2010南京模拟】若函数在上递增,则实数a的取值范围为 .变式练习3【2007年江苏13】已知函数在区间上的最大值与最小值分别为,则 32变式练习4【2007江西9】设在内单调递增,则是的 。必要不充分条件例4【兴化市戴南高级中学09模】19已知函数(1)求函数的最大值;(2)设,求在上的最大值;(3)试证明:对,不等式恒成立变式练习【楚州中学1011高二期末】20已知函数,且对任意,有.(1)求;(2)已知在区间(0,1)上为单调函数,求实数的取值范围.(3)讨论函数的零点个数?(提示:)3