福建师范大学21春《近世代数》在线作业一满分答案23

上传人:pu****.1 文档编号:507513189 上传时间:2023-11-05 格式:DOCX 页数:21 大小:23.58KB
返回 下载 相关 举报
福建师范大学21春《近世代数》在线作业一满分答案23_第1页
第1页 / 共21页
福建师范大学21春《近世代数》在线作业一满分答案23_第2页
第2页 / 共21页
福建师范大学21春《近世代数》在线作业一满分答案23_第3页
第3页 / 共21页
福建师范大学21春《近世代数》在线作业一满分答案23_第4页
第4页 / 共21页
福建师范大学21春《近世代数》在线作业一满分答案23_第5页
第5页 / 共21页
点击查看更多>>
资源描述

《福建师范大学21春《近世代数》在线作业一满分答案23》由会员分享,可在线阅读,更多相关《福建师范大学21春《近世代数》在线作业一满分答案23(21页珍藏版)》请在金锄头文库上搜索。

1、福建师范大学21春近世代数在线作业一满分答案1. 0n|sinx|dx (n是自然数)0n|sinx|dx(n是自然数)0n|sinx|dx k=0n-1k(k+1)|sinx|dx 令 x=k+t 则 k(k-1)|sinx|dx=0(k+t)sinxtdt =(2k+1) 原式=k=0n-1(2k+1)=n2 解2 令x=n-t,则 0n|sinx|dx=0n(n-t)|sint|dt =n0n|sint|dt-0nt|sint|dt 从而有 2. 两奇函数之和是_,两奇函数之积是_,两偶函数之积是_,一个偶函数与一个奇函数之积是_。(两奇函数之和是_,两奇函数之积是_,两偶函数之积是_,

2、一个偶函数与一个奇函数之积是_。(填奇、偶函数)奇函数$偶函数$偶函数$奇函数3. 甲、乙两车床生产同一种零件现从这两车床产生的产品中分别抽取8个和9个,测得其外径(单位:mm)为: 甲:15.0,1甲、乙两车床生产同一种零件现从这两车床产生的产品中分别抽取8个和9个,测得其外径(单位:mm)为:甲:15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8乙:15.2,15.0,14.8,15.2,15.0,15.0,14.8,15.1,14.8假定其外径都服从正态分布,问乙车床的加工精度是否比甲车床的高(=0.05)?4. 若一元函数(x)在a,b上连续,令 f(x,y

3、)=(x),(x,y)D=a,b(-,+) 试讨论f在D上是否连续?是否一致连若一元函数(x)在a,b上连续,令f(x,y)=(x),(x,y)D=a,b(-,+)试讨论f在D上是否连续?是否一致连续?f(x,y)在D上连续且一致连续 因为(x)在闭区间a,b上连续,所以(x)在a,b上一致连续因而对,当x1,x2a,b,|x1-x2|时,有 |(x1)-(x2)| 由于f(x,y)=(x)与y无关,所以对,当|x1-x2|,|y1-y2|(或(P1,P2)时,就有 |f(x1,y1)-f(x2,y2)|=|(x1)-(x2)| 故f(x,y)在D上一致连续 5. 某林区现有木材10万米3,如

4、果在每一瞬时木材的变化率与当时的木材数成正比,假设10年内该林区有木某林区现有木材10万米3,如果在每一瞬时木材的变化率与当时的木材数成正比,假设10年内该林区有木材20万米3,试确定木材数P与时间t的关系正确答案:6. 求二次曲线224y5y268y1000的主轴求二次曲线224y5y268y1000的主轴正确答案:主轴为612y110和2y20主轴为612y110和2y207. 求曲线y=cosx在点的切线和法线方程求曲线y=cosx在点的切线和法线方程切线方程 法线方程 8. 设f(x)的导数在x=a处连续,又,则( ) (A) x=a是f(x)的极小值点 (B) x=a是f(x)的极大

5、值点 (C) (a,f(a)为设f(x)的导数在x=a处连续,又,则()(A) x=a是f(x)的极小值点(B) x=a是f(x)的极大值点(C) (a,f(a)为f(x)的拐点(D) x=a不是f(x)的极值点,(a,f(a)也不是曲线y=f(x)的拐点B9. 计算第一类曲线积分Lf(x,y)ds时,要注意哪些问题?计算第一类曲线积分Lf(x,y)ds时,要注意哪些问题?(1)如果积分弧段L用显式方程y=y(x)(axb)给出,则可把它当作特殊的参数方程x=t,y-y(t)(atb)的情形来处理但此时有一点要注意:有些可用参数方程统一表示的曲线(特别如闭曲线),若用显式方程y=y(x)(或x

6、=x(y)来表示,也许需要分弧段表示比如圆L:x=cost,y=sint(0t2),若用显式方程表示则需分成上半圆L1:(-1x1)和下半圆L2:(-1x1),这时计算在L上的第一类曲线积分就要分别计算在L1和L2上的第一类曲线积分,然后把结果相加 如果积分弧段L用极坐标方程=()()表示,则可把它看作是特殊的参数方程 x=()cos, y=()sin() 的情形处理容易算得,此时 (2)如同重积分那样,也可以利用对称性来化简第一类曲线积分的计算,有关结论与重积分的情况类似比如,若积分弧段L关于x轴对称,而被积函数f(x,y)关于y是奇函数,则Lf(x,y)ds=0;若f(x,y)关于y是偶函

7、数,则Lf(x,y)ds=2L1f(x,y)ds,其中L1是L上的y0的那一部分弧段又若L关于直线y=x对称,则Lf(x,y)ds=Lf(y,x)ds,等等读者可类比得出其他情况下的结论 计算第一类曲线积分时,还可以利用积分弧段L的方程来化简被积函数(计算第二类曲线积分时也可以这样处理)由于积分变量x,y取在L上,故x,y满足L的方程,因此,需要时可将L的方程代入被积函数,达到化简的目的,这是计算曲线积分(以及以后的曲面积分)特有的方法 10. 有效数字越多,相对误差越_有效数字越多,相对误差越_小11. 简述统计指标的分类。简述统计指标的分类。正确答案:统计指标可以按其研究的目的从不同角度进

8、行分类:按指标反映的时间特点不同分为时点指标和时期指标;按指标计量单位的不同分为实物指标和价值指标;按指标反映总体特征的不同分为数量指标和质量指标。统计指标可以按其研究的目的从不同角度进行分类:按指标反映的时间特点不同,分为时点指标和时期指标;按指标计量单位的不同,分为实物指标和价值指标;按指标反映总体特征的不同,分为数量指标和质量指标。12. 某纺织厂生产的细纱支数的均方差为1.2,现从当日生产的一批产品中,随机抽了16缕进行支数测量,求得样本均方差某纺织厂生产的细纱支数的均方差为1.2,现从当日生产的一批产品中,随机抽了16缕进行支数测量,求得样本均方差为2.1,问:在正态总体的假定下,纱

9、的均匀是否变劣(=0.05)?13. 从装有3只红球,2只白球的口袋中任意取出2只球,则事件“取到2只白球”的逆事件是( ) A取到2只红球 B取到从装有3只红球,2只白球的口袋中任意取出2只球,则事件“取到2只白球”的逆事件是()A取到2只红球B取到的白球数大于2C没有取到白球D至少取到1只红球D因为逆事件等同于否事件,而取到2只白球的否为至少取到1只红球14. 设2x3-x2+3x-5=a(x-2)3+b(x-2)2+c(x-2)+d,求a,b,c,d 提示:应用综合除法 设2x3-x2+3x-5=a(x-2)3+b(x-2)2+c(x-2)+d,求a,b,c,d提示:应用综合除法 由 可

10、知,以x-2除f(x)得余数d;再以x-2除商q1(x)得余数c;再以x-2除第二次商q2(x)得余数b,易知a=2,也是第三次除法所得之商 算式如下: 结果有 f(x)=2x3-x2-3x-5 =2(x-2)3+11(x-2)2+23(x-2)+13 15. 据推测认为,矮个子的人比高个子的人寿命要长一些下面将美国31个自然死亡的总体分为矮个子与高个子两类(以1据推测认为,矮个子的人比高个子的人寿命要长一些下面将美国31个自然死亡的总体分为矮个子与高个子两类(以172.72 em(5英尺8英寸)为界)其寿命如下:短个子8579679080高个子685363708874646660607871

11、6790737177725778675663648365设两个寿命总体服从正态分布,且方差相等,问:数据显示是否符合推测(=0.05)?这是,但2未知的双总体均值的单侧检验,=0.05 待检假设 H0:12,H1:12 由=80.2,=69.15,s1=8.585,s2=9.315,n1=5,n2=26,计算T检验统计量得 此处,=1-2 查表得t0.05(29)=1.6991,经比较知t=2.4564t0.05(29)=1.6991,故拒绝H0,认为推测正确,矮个子人的寿命高于高个子人的寿命 16. 求由下列方程所确定的隐函数的导数: (1) (2)x2 (3) (4) (5) (6)求由下

12、列方程所确定的隐函数的导数:(1)(2)x2(3)(4)(5)(6)令 F(x,y)x2y+3x4y3-4, 因为 所以 (2)令 因为 所以 (3)令 因为 所以 (4)在等式两边分别微分: 所以 解出 化简有 故 (5)令 因为 所以 (6)令 因为 所以 17. 设随机变量XB(200,0.01),则P(X5)=0.9473 ( )设随机变量XB(200,0.01),则P(X5)=0.9473 ()正确18. 求矩阵A特征值的QR迭代时,具体收敛到哪种矩阵是由A的哪种性质决定的?求矩阵A特征值的QR迭代时,具体收敛到哪种矩阵是由A的哪种性质决定的?设ARnn,且A有完备的特征向量组如果A

13、的等模特征值中只有实重特征值或多重复的共轭特征值,则由QR算法产生的Ak本质收敛于分块上三角矩阵(对角块为一阶和二阶子块)且对角块中每一个22子块给出A的一对共轭复特征值,每一个一阶对角子块给出A的实特征值,即 其中m+2l=n,BI(i=1,2,l)为22子块,它给出A的一对共轭特征值 19. 某公司用自动灌装机灌装营养液,设自动灌装机的正常灌装量N(100,1.22),现测量9支灌装样品的灌装量(单位:g)某公司用自动灌装机灌装营养液,设自动灌装机的正常灌装量N(100,1.22),现测量9支灌装样品的灌装量(单位:g)为:99.3,98.7,100.5,101.2,98.3,99.7,102.1,100.5,99.5问在显著性水平=0.05下,已知2=1.44

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 习题/试题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号