采样保持电路

上传人:M****1 文档编号:507277844 上传时间:2022-07-12 格式:DOCX 页数:10 大小:181.31KB
返回 下载 相关 举报
采样保持电路_第1页
第1页 / 共10页
采样保持电路_第2页
第2页 / 共10页
采样保持电路_第3页
第3页 / 共10页
采样保持电路_第4页
第4页 / 共10页
采样保持电路_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《采样保持电路》由会员分享,可在线阅读,更多相关《采样保持电路(10页珍藏版)》请在金锄头文库上搜索。

1、一、采样保持电路的引入在A/D转换期间,为了使输入信号不变,保持在开始转换时的值,通常要 采用一个采样保持电路。对于MCS-96单片机的A/D转换器,启动转换实际上 是把采样开关接通,进行采样,过一段时间后,开关断开,采样电路进入保持模 式,才是A/D真正开始转换二、采样保持电路的原理A/D转换需要一定时间,在转换过程中,如果送给ADC的模拟量发生变化, 则不能保证精度。为此,在ADC前加入采样保持电路,如图下所示。采样保持 电路有两种工作状态:采样状态和保持状态。1、采样状态:控制开关K闭合输出跟随输入变化。2、保持状态:控制开关K断开,由保持电容C维持该电路的输出不变。运算放大器A2:典型

2、的跟随器接法。输入阻抗:高阻。保持状态K分)下 Ch放电小,保持电压不变。输出阻抗:小。采样保持电路的负载能力大。运算 放大器A1: K闭合时为跟随器。(不关心K断开的情况)。输入阻抗:高阻。对输入信号的负载能力要求小。输出阻抗:小。采样状态时,Ch上的电压快速 跟随输入变化。控制开关K:由接口电路控制。三、采样采样脉冲的频率 由下图可知,采样脉冲的频率fs(fs=1/Ts)越高,采样越密,采样值越多,采样 信号的包络线越接近输入信号的波形.假设输入信号的最高频率为fm,则根据采 样定理知:当采样频率fs2fm时,采样信号可正确反映输入信号。图2. 30 采样/保持电路的输出阀输入变化的波形图

3、通常对直流或缓变低频信号进行采样时可不用采样保持电路。三、加入S/H后模/数转换控制过程加入S/H后,整个模/数转换过程如下图所示。inAs/H的模数转换过程CPU1、CPU经接口电路使K闭合(启动采样)。2、CPU经接口电路使K断开(保持)。(*)3、CPU向ADC发出启动转换信号(转换或称量化)。(*)4、查询A/D转换完成否,或使用中断方式。5、读取转换后的数字。6、在实际硬件设计中,一般第、步设计为用一条指令完成。四、多路转换模拟开关1、原理由于计算机在任一时刻只能接收一路模拟量信号的采集输入,当有多路模拟 量信号时需通过模拟转换开关,按一定顺序选取其中一路进行采集。一般多路转 换开关

4、(AMUX)有2n个输入端,N个控制选择端,一个控制端。对N个控制 选择端(即地址)进行译码,选中某一个开关闭合。AUMX的一般性能要求是 开关通导电阻小,断开电阻无穷大,转换速度快等。在由于需要处理多路模拟量输入/输出时,可以使用一个ADC/DAC,而用 MUX切换各路信号。2、常用的MUX:AD7501、AD7503 :多路输入、一路输出(用于A/D)。CD4051、CD4052:双向。多路输入、一路输出(用于A/D),或一路 输入、多路输出(用于D/A)。需要采样保持电路,取决于模拟信号的变化频率和A/D转换时间,通常对直流或缓变低频信号进行采样时可不用采样保 持实际系统中,是否需要采样

5、保持电路,取决于模拟信号的变化频率和A/D转 换时间。五、采样定理采样定理是1928年由美国电信工程师H.奈奎斯特首先提出来的。1、采样定理的概念采样定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依 据,采样定理:模拟/数字信号的转换过程中,当采样频率fs.max大于信号中,最 高频率fmax的2倍时,即:fs.max=2fmax,则采样之后的数字信号完整地保留 了原始信号中的信息,一般取2.56-4倍的信号最大频率。2、信号混叠如果不能满足上述采样条件,采样后信号的频率就会重叠,即高于采样频率 一半的频率成分将被重建成低于采样频率一半的信号。这种频谱的重叠导致的失 真称为混叠,

6、而重建出来的信号称为原信号的混叠替身,因为这两个信号有同样 的样本值。3、解决信号混叠的方法提高采样频率,使之达到最高信号频率的两倍以上;引入低通滤波器或提高低通滤波器的参数;该低通滤波器通常称为抗混叠 滤波器抗混叠滤波器可限制信号的带宽,使之满足采样定理的条件。从理论上来说, 这是可行的,但是在实际情况中是不可能做到的。因为滤波器不可能完全滤除奈 奎斯特频率之上的信号,所以,采样定理要求的带宽之外总有一些“小的”能量。 不过抗混叠滤波器可使这些能量足够小,以全可忽略不计。4、有限带宽信号采样和混叠的数学分析有限带宽信号首先从有限带宽信号开始讨论。这样做取决于数学和物理两个方面的因素, 下文将

7、进行阐述。如果某个信号在某个频点(截止频率)以外的频谱幅度均为零, 那么这一信号称为有限带宽信号。图1中的g(f)即是这样的信号,大于频点a的 频率频谱幅度为零。在这种情况下,a也是这个基带信号的带宽(BW)。(由于频 率为负没有物理意义,因此基带信号的带宽仅被定义为正频率。)图1.信号g(f)的频谱接下来对g(f)进行采样。我们可以利用数学形式表示该操作,即g(f)乘以一 个时间间隔为T的冲激函数序列。通过将g(f)与冲激函数相乘,我们得到对应于 冲激函数发生时刻的g(f )值,其它任何时间的乘积都为零。这类似于以 fSAMPLING = 1/T的频率对g(f)采样。该操作可用公式1表示,采

8、样后的新信号如二町疙叫(Eql)称为s(t):下一步是找出已采样信号S(t)的频谱。通过对公式1进行傅立叶变换可得到:MV、知)=山)厂翊以(Eq2j计算上面的积分比较复杂。为了简化计算,注意到s(t)是g(f)与冲激脉冲序列 的乘积。同时我们还知道时域的乘法对应频域的卷积。(关于这一结论的证明可 参考任何有关傅立叶变换的资料。)因此,S(f)可以表示为:丈)二敏/歹(Eq 3)注意公式3中的星号表示卷积,而不是相乘。我们已经知道原始信号的频谱 g(f),因此只需要算出冲激函数序列的傅立叶变换。我们知道冲激函数序列是一个周期函数,因而可以用傅立叶级数表示。如下式:30DC-fT=M3ff =

9、(Eq 4)其中傅立叶系数为:,m,用4=亍如-打叮咪以 -772 f(闿5)公式5中积分的上下限只指定为一个周期。当处理冲激函数时,这没有问题。然而,为了使上面的表达式具有更好的通用性,可以进行如下代换处理:用一个 从负无穷到正无穷的傅立叶积分代替该积分,并用单个冲激函数一周期信号的基 本信号替代周期性的冲激函数序列。因而,公式5可以改写为: 卜与知-*2电泌)广!(Eq 6)jf JL/rf T 1这样一来冲激函数序列可采用以下易于进行傅立叶变换的简化表达式:如-仍=3 抑=ff =-考虑到一个信号可以从其傅立叶变换积分得到,如下式:陌)二Jg钢 E并且:* st/-A)= J 叶林g 喻

10、1最终表达式如下:E1 1/JJ 1 .厂如-叨=亍厂亍=如wm%)S = f=J 1? = = 1 J 占=DC(Bq 7)lEq8j心10)根据以上结果,再重新考虑已采样的基带信号。其傅立叶变换表达式如下:对=助* 7 /一?|Eq 11),料=一叭/ /两个信号A(f)和B(f)的卷积定义为:.0 * 矽)=J=町物-fdf(Eq 则S(f)可表示为:灯)=明*牛卜妒二=! L(Eq 13)计算的结果为公式13,通常称为采样定理。它表明在时域里按周期T (秒)采样 得到的信号会以1/T的频率重复原始信号的频谱,如图2所示。这一结果反过来 可以清楚且直观地回答先前的问题:如何采样模拟信号才

11、能够保持原始信号的全 部信息。为保留原始基带信号的所有信息,必须确保每一个重复频谱“轮廓”之间不发 生交叠。如果相互交叠(这种现象称为混叠),就不可能再从采样信号中恢复出原 始信号。这会使高频成分混叠到低频频段,如图3所示。图3.混叠对信号的影响为了避免混叠,必须满足以下条件:1/T 2a,或1/T 2BW。该结论也可用米样频率表小为:(1沁 14)因此,不会产生混叠的最小采样频率为2BW。这就是众所周知的奈奎斯特 定律。图3给出了产生混叠的采样信号。注意高频信号分量fH呈现为低频分量。您可以用一个低通滤波器来恢复原始频谱,并将其它频谱分量滤掉(衰减)。当使 用截止频率为a的低通滤波器恢复信号

12、时,它无法将混叠的高频信号滤掉,从而 造成有用信号的劣化。考虑到混叠会恶化有用信号,再来考虑带通信号这类特定的有限带宽信号。带通信号的低频边界不是零。如图4所示,带通信号的信号能量分布在aL与aU 之间,其带宽定义为aU - aL。因此,带通信号和基带信号的主要区别在于它们的带宽定义:基带信号的带宽等于它的最高频率,而带通信号的带宽为最高频率 和最低频率之差。图4.带通信号从前面的讨论可知,采样信号以1/T的周期重复原始信号的频谱。因为这个 频谱实际上包括从0Hz到原始带通信号低频截止频率之间的零幅值频带,所 以实际的信号带宽要比aU低。因此可以在频域内做一定的频率偏移,从而 允许采样频率低于

13、当信号频谱占据整个零至aU范围时要求的采样频率。例如,假定信号带宽为aU/2,采样频率取为aU即可满足奈奎斯特定律,采 样信号的频谱如图5所示。图5.带通采样信号的频谱该采样过程没有产生混叠,因此如果有理想的带通滤波器,可完全从采样信号中 恢复出原始信号。在本例中,注意到基带和带通信号的差别是非常重要的。对于 基带信号,带宽和相应的采样频率只由最高频率决定。而带通信号的带宽通常都 要比最高频率小。以上特性决定了从采样信号中恢复原始信号的方法。对于最高 频率相同的基带信号和带通信号,只要采用合适的带通滤波器来隔离原始信号频 谱(图5中的白色矩形部分),带通信号就可以采用较低的采样频率。由于信号频

14、 谱中包括阴影部分,用于基带信号恢复的低通滤波器在这种情况下无法恢复出原 始带通信号,如图5所示。所以如果要用低通滤波器恢复图5中的带通信号,采样频率必须在2aU以上以避免混叠。有限带宽信号必须在满足奈奎斯特定律 的情况下才能被完全恢复。对于带通信号,只有用带通滤波器时奈奎斯特采样频 率才可以避免混叠。否则就必须使用更高的采样频率。在实际应用中选择转换器 采样频率时,这一点很重要。还要注意的是对有限带宽信号的假设。从数学上分 析,一个信号不可能是真正有限带宽的。傅立叶变换定律告诉我们,如果一个信 号的持续时间是有限的,则它的频谱就会延展到无限频率范围,如果它的带宽是 有限的,则它的持续时间是无限的。很显然,我们找不到一个持续无限时间的时 域信号,所以也不可能有真正的有限带宽信号。不过绝大部分实际信号的频谱能 量都集中在有限带宽内,因此前面的分析对这些信号仍然有效。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号