水性建筑涂料专用纳米碳酸钙的改性

上传人:公**** 文档编号:506657730 上传时间:2022-08-28 格式:DOCX 页数:14 大小:189.49KB
返回 下载 相关 举报
水性建筑涂料专用纳米碳酸钙的改性_第1页
第1页 / 共14页
水性建筑涂料专用纳米碳酸钙的改性_第2页
第2页 / 共14页
水性建筑涂料专用纳米碳酸钙的改性_第3页
第3页 / 共14页
水性建筑涂料专用纳米碳酸钙的改性_第4页
第4页 / 共14页
水性建筑涂料专用纳米碳酸钙的改性_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《水性建筑涂料专用纳米碳酸钙的改性》由会员分享,可在线阅读,更多相关《水性建筑涂料专用纳米碳酸钙的改性(14页珍藏版)》请在金锄头文库上搜索。

1、Modification of nanometer calcium carbonate forwater-borne architectural coatings水性建筑涂料专用纳米碳酸钙的改性Abstract: A kind of modifier was synthesized to modify the surface of nanometer calcium carbonate (abbreviated as nano-CaCO3), which is used in architectural coatings. The modification technology of the

2、nano-CaCO3 was studied through orthogonal experimental methods. The factors studied were rotation peed, modifier dosage, emulsification temperature, emulsification time and heat aging time after emulsification. Optimized conditions for modification of the surface were: rotation speed 16000r/min; mod

3、ifier dosage 3%; emulsification temperature 75C; emulsification time 60 min and aging time 40 min. The modified nano-CaCO 3 was also studied by size-distribution measurements, transmission electron microscopy, infrared spectroscopy and thermal analysis. The results show that the size distribution of

4、 the modified nano-CaCO3 is uniform and that there are chemi-sorption and physi-sorption between the nano-CaCO3 and the modifier. Compared to traditional architectural coatings without nano-CaCO3, the nanometer composite coatings are obviously improved in respect to dirt resistance, scrub resistance

5、, thixotropy, water resistance, alkalinity resistance and aging resistance.摘要:合成一种改性剂来修饰建筑涂料用纳米碳酸钙(简称nano-CaCO3) 表面。通过正交实验方法研究nano-CaCO3改性技术。因素分析有转速、改性剂 用量、乳化温度、乳化时间和乳化后热老化时间。表面改性的最优条件是转速 16000r/min,改性剂用量3%,乳化温度75C,乳化时间60min,陈化时间40min。 改性后纳米碳酸钙通过粒径检测,投射扫描电镜,红外光谱和热学分析进行研究。 结果表明,改性后纳米碳酸钙尺寸分布均匀,纳米碳酸钙和改

6、性剂之间存在化学 吸附和物理吸附。相对于未添加纳米碳酸钙的常见建筑涂料,经过纳米材料复合 的涂料具有抗污性,可洗性,触变性,抗水性,抗碱性和抗老化性等方面具有显 著提升。1、IntroductionNanometer calcium carbonate, having a particle size between 1-100nm, is an important engineering material that has been developed in the 1980s. The super fine nano-CaCO3 particles have a large surface

7、compared to the volume of the crystals. The large number of unsatisfied valencies at the surface resu Its in a “small size effect and a “surface effect that ordinary calcium carbonate does not have. Therefore, compounding nano-CaCO3 into architectural coatings might greatly improve the property of a

8、rchitectural coatings, and greatly broaden the application of nano-CaCO3.1、前言在20世纪80年代纳米碳酸钙发展为一种重要的工程材料其粒子大小为 1100nm。超细纳米碳酸钙相对于它体积而言,具有极大的表面积。其表面大量 的不饱和键使其具有“小尺寸”效应和表面效应,这是普通碳酸钙不具备的。 因此,在建筑涂料中混合纳米碳酸钙可能会极大地提升建筑涂料的性能,同时能 很好的拓展纳米碳酸钙的应用。However, because of the high surface polarity and high surface ener

9、gy, many things could absorb on the surface of the nano-CaCO3 particles. The particles could also agglomerate and form bigger particles, which could make the nano-CaCO3 lose its special properties and weaken the coating performance. In order to improve how nano-CaCO3 particles disperse in the coatin

10、g solutions and to increase the nano-particle binding force to other components, it is necessary to modify the surface. This will reduce the surface energy of the granules to enhance granule-emulsion affinity and to weaken the polarity of the granule surface.然而,因为高表面极性和高表面能,导致许多物质会吸附在纳米碳酸钙粒子 表面。同时纳米

11、碳酸钙粒子会团聚形成更大的粒子,从而导致纳米碳酸钙丧失其 特殊的性能,降低涂料的性能。为了改善纳米碳酸钙在涂料溶液中的分散性,增 强纳米碳酸钙在其他组分上的键合力,需要对纳米碳酸钙表面进行改性。这将降 低粒子表面的表面能,提高粒子乳液亲和力,减弱粒子表面极性。Therefore, a kind of modifier was synthesized to treat nano-CaCO3 used in architectural coatings. The effect of the surface modification was evaluated by determining the

12、particle size and the settlement percentage. These parameters were also measured to optimize the modification treatment conditions. Then nanometer-composite architectural coatings were prepared and the mechanism by which the nano-CaCO3 was modified was studied by infrared spectral and thermal analys

13、is.因此,一种改善纳米碳酸钙在建筑涂料中应用的改性剂被合成出来。通过测 定粒子尺寸和沉降百分比来判断表面改性的效果。这些参数也用于判断较优的改 性条件。然后通过红外光谱和热分析研究纳米碳酸钙改性机理,制备纳米复合建 筑涂料。2、Experimental2.1 MaterialsNano-CaCO3 suspension (7.76%) was provided by Anhui Chaodong Nanometer Material Science and Technology Co., Ltd.; Butyl acrylate (BA, 99.5%), Acrylic acid (AA,

14、99.9%), Benzoyl peroxide (AA, 99.9%)and Triethylamine (TEA, 99.9%) were purchased from Shanghai Shengyu Chemical Industry Co., Ltd.; Ethylene glycol ethyl ether (EE, 99.5%) was obtained from Jiangsu Ruijia Chemistry Co., Ltd.2、实验2.1材料纳米碳酸钙悬浮液(7.76% )由安徽朝东纳米科技有限公司提供;丙烯酸丁酯 (BA, 99.5%),丙烯酸(AA, 99.9%),过

15、氧化苯甲酰(AA, 99.9%)和三乙胺(TEA, 99.9%)由上海盛誉化学工业有限公司提供;乙二醇乙醚(EE, 99.5%)由江苏瑞嘉化 学有限公司提供。2.2 Methods1) Synthesis of modifier73.125g of butyl acrylate (BA), 39.375g of acrylicacid (AA), 0.675g of benzoyl peroxide (BPO) and 360g ethylene glycol ethyl ether (EE) were added to a 1000 mL three-necked flask. The mi

16、xture was stirred while continuously adding drop wise mixture I (a mixture of 73.125 g BA, 39.375 g AA, 0.675 g BPO and 90 g EE) over a period of 4 h at a temperature between (104 -08) C. The solution was then kept at this temperature for 1 h. Next, mixture II (a mixture of 0.45g BPO and 9g EE) was added drop wise to the solution over an hour and a half. The solution was then kept stirring for an additional 2 h at a temperature of (104-108) C. Fi

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 活动策划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号