PS教程-摄影与处理DC2007最终增强版[完整版]

上传人:鲁** 文档编号:506412827 上传时间:2023-05-16 格式:DOC 页数:40 大小:6.87MB
返回 下载 相关 举报
PS教程-摄影与处理DC2007最终增强版[完整版]_第1页
第1页 / 共40页
PS教程-摄影与处理DC2007最终增强版[完整版]_第2页
第2页 / 共40页
PS教程-摄影与处理DC2007最终增强版[完整版]_第3页
第3页 / 共40页
PS教程-摄影与处理DC2007最终增强版[完整版]_第4页
第4页 / 共40页
PS教程-摄影与处理DC2007最终增强版[完整版]_第5页
第5页 / 共40页
点击查看更多>>
资源描述

《PS教程-摄影与处理DC2007最终增强版[完整版]》由会员分享,可在线阅读,更多相关《PS教程-摄影与处理DC2007最终增强版[完整版](40页珍藏版)》请在金锄头文库上搜索。

1、PS教程-摄影与处理DC2007最终增强版完整版来源:http:/ 现代照相机形式多样,从巴掌大小的袖珍数码相机,到老式照相馆使用的几公斤重的大型叶片相机;从买胶卷就送的廉价一次性相机,到世界上最贵的照相机造价30亿美元的哈勃太空望远镜,其实它们都遵循的是同一个原理,就是我们在中学物理中就学习过的凸透镜成像原理(注:哈勃是反射式的望远镜,不完全符合凸透镜原理,此处仅为类比)。现在,就让我们重温一下这个原理。 (凸透镜成像原理图) 在中学物理中,上图A点叫做光心,B点叫做主焦点,C点事实上是成像单元,D为被摄物,E为成像;被摄物到A点距离称之为物距,AB点间距离称之为焦距,AC点间距离为像距;当

2、物距大于2倍焦距的时候,成缩小的倒立成像(当物距小于2倍焦距的时候,成放大的倒立成像)。 事实上,在照相机的原理中,A点是一个理想化的凸透镜,现实上表现为照相机的镜头,包容了ABCE的外框在原理上是一个不透光的盒子,现实上表现为照相机的机身,这些方面数码相机与传统使用胶卷的照相机毫无二致;唯一的区别来自于最后的成像单元C。传统照相机(以135相机为例)的成像单元使用的是35mm胶片,也就是平常我们看到的胶卷;而数码照相机的成像单元使用的是超大规模集成的CCD(CMOS)电路。就是因为这个变化,使得数码相机在使用和性能方面不同于传统的135相机,而且这些影响有些是消极的。 1、 片幅与像素 也许

3、大家经常听到全幅、APS、135、120、1/1.8寸CCD、2/3寸CCD这样的概念,也经常听到形容一台数码成像设备的时候,有个最主要的参数“x百万像素”,其实消费市场有一定的误导,像素并不是对数码成像设备唯一的考量因素。让我们先从片幅说起,照相机发展了许多年,原理图上的成像单元C也演变成了各种不同的规格。其中135幅面已经成为民用照相机的主流规格,35mm胶卷的来历,就是因为这种胶卷大小是36mm*24mm,而高度算上齿孔正好是35mm,除了135规格之外,还有比135小的APS规格,比135大的645规格,而市场上常见到的数码照相机的1/1.8英寸CCD,按面积计算的话,还不到135幅面

4、的1/16。从传统的照相机技术来说,当然是面积越大的成像单元能得到更好的照片质量,放在数码照相机上来说也能成立,由于数码相机的成像单元面积普遍偏小,所以拥有相对较大的成像单元面积,一般情况下也相对地能获得更好的照片质量,通俗点说,就是CCD越大,成像就越好,但这也不是绝对的,现代数码照相机的技术发展得很快,成像单元的感光素质和所使用的镜头组件以及后期的处理电路,都对成像有很大的影响。 (成像面积对比图) *像素的概念 不少人只是模糊地认为像素越大就越好,并没有一个明确的概念,下面我们就来详细地了解一下。 上图是一张很普通的照片,计算机上大部分的图像浏览软件如ACDSEE、XnView等,都会在

5、左下角标示出图像的相关数据,其中“1024x768x24”中的“1024x768”就是这张图片的分辨率,24表示的是该图片是真彩色的,而后面的“248.22KB”表示的是这张图片所占用的存储容量,“100%”表示的是该图片是以100%来显示在显示器屏幕上的。 我们再来看另外一张图: 此图所标示的图像数据与上图大同小异,“640x480”表示的是该图像的分辨率,“108.71KB”表示的是该图片所占用的存储容量,仍然是以100%显示在显示器屏幕上的。 这里,我们说图1是80万像素的照片,因为1024x768= 786432,而图2分辨率是640x480= 307200,自然是30万像素的照片,以

6、此类推,2560x1920=4915200就是500万像素,3624x2448= 7990272,就是800万像素了。现在,让我们把照片放得很大,如图: 图像浏览软件表明是800%,也就是放大了8倍,但图像仍然是图1,仅仅是放大了观看而已,分辨率仍然是1024x768,像素仍然是80万,当我们把照片放得尽可能大的时候,我们会发现,计算机所显示的图像其实是由一个个不同颜色的发光点所组成的,同样,当成像单元捕捉信号的时候,生成的图像也是由一个个发光点所组成,所以这幅80万像素的照片,就是由1024x768= 786432个发光点组成,这就是像素和分辨率的关系。此外像素和分辨率也直接影响了照片的容量

7、,如上两图就可以看到,80万像素的照片比30万像素的多占用了一倍多的容量。最后,回到画质上来,大家是否觉得这张30万像素的照片,比许多市面上号称130万像素、200万像素的手机摄像头所拍的照片,都要清晰得多呢?原因很简单,此照片用Canon EOS 300D拍摄,300D使用APS-C片幅的成像单元,而手机摄像头的成像单元,比图中最小的1/2.5寸CCD还要小得多。需要说明一下的是,像素、分辨率和容量的关系,还跟数码相机的后期输出算法、图形处理软件的算法等有很大关系,会在接下来的叙述中详细讲述,此处只是一个初步的概念。 2、 胶卷、CCD与CMOS 从上面的原理图中,我们知道,成像单元C可以是

8、任何东西,它只要能捕捉到光线和色彩的变化就可以了,我们传统使用的135胶卷,就是涂了一种叫做溴化银的化学物质,这种物质对白光非常敏感,对红光不敏感,当自然光线照射到胶卷上时,就会根据光线的强弱不同形成相应的成像。所以,平时胶卷是装在胶卷筒里的,拿出来见到光线就会作废,冲洗也只能在红色光线的条件下。 现代的数码照相机则是使用超大规模的电子成像元件,光线照在成像元件上,成像元件通过扫描成像。目前来说有两种,分别是CCD(光感应式的电荷耦合器件)和CMOS(互补金属氧化物半导体),CCD是消费类市场的主流,CMOS又分为两种:Canon、Sony等厂家制造的大面积高素质的数码相机成像单元(例如Can

9、on EOS 300D、Sony R1使用的就是APS-C幅面的CMOS器件),另一种则是PC摄像头、手机摄像头等所使用的素质较差的CMOS器件。 目前有能力制造CCD器件的厂商有Sony、Panasonic、Sharp、Sanyo、Fujifilm、Kodak、Nikon等,有能力制造大幅面CMOS器件的厂商有Canon、Nikon和Sony等。其中Sony的消费类CCD器件和Canon的CMOS器件占了主流,大幅面的(135以上)成像器件只有Kodak、Fujifilm等少数厂商在研制生产,由于片幅越大,制造难度增大,成本也越高,造成了大面积的成像单元价格高昂,也是数码相机上都是使用小面积

10、的CCD元件的主要原因之一。 接下来讲述一下成像单元的片幅与画质、像素的关系,由于Fujiflim富士有一种叫做SuperCCD的成像元件,对于较好地理解这个关系有辅助作用,故以之为辅助例子。 由上图可以看到,2/3寸CCD做600万像素(即600万个感光点)时,每一个感光点的有效感光面积比在1/1.8寸上做600万像素时,要大上许多,更大的感光面积意味着更好的信噪比,一般来说也就是更好的画质,当这块1/1.8寸CCD被制造成800万像素甚至更高时,每个感光点的感光面积更小,信噪比会无可避免地下降(信噪比就是有效信号与无用噪声信号的比值,想象一下,一块CCD的成像,如果800万像素里面有400

11、万像素都是噪点,那再高的像素又有什么意义?)。而富士的SuperCCD则是一种比较特殊的形式,它的感光点是六角形的,根据平面几何学的原理,同一面积内容纳的六角形比圆形要多,面积也要大,所以第五代的SuperCCD在高感光度下的画质,比一般的同面积CCD要好。在这里,补充说明一下,所提及的2/3寸、1/1.8寸这样的尺寸都是一种传统的标注方式,是以古老的摄影机真空摄像管对角线大小作为衡量标准的,实际的计算方法可以粗略地表示为实际对角线长度=标注对角线长度/16,以1/1.8寸CCD为例,其实际对角线长度为(1/1.8)*25.4/16,约等于9mm(1英寸=25.4mm)。 3、 镜头 从原理图

12、上我们知道,A是一个非常理想化的凸透镜,现实中照相机的镜头受到各方面的影响,并不能单纯以一个凸透镜了事。通常在产品上看到的实际上是一个镜头组。在传统光学领域有技术积累的厂商,如佳能、奥林巴斯、富士等纷纷在其中使用多片镜头组,而且使用非球面镜镜片;佳能和尼康等厂商甚至在高端的消费类机器内加入ED镜片,其目的只有一个,就是纠正光路,使其更符合理想的凸透镜状态,也就是我们平常看到的镜头的参数:“x片y组,其中z片非球面镜”。 从原理图我们知道,AB点之间的距离就是焦距。平常我们在数码相机看到的镜头上的标示如“35mm105mm”这样的参数,就是这台数码相机的焦距范围,它能在35mm105mm之间这样

13、的范围内变焦,也就是常说的3倍光学变焦。焦点B的移动,就造成了在成像元件C上成像的大小通俗点说就是长焦的时候把被摄物拉近。由于数码相机机能的限制,普通的数码相机变焦比不能做得很大,常见的也就3、4倍。市面上有许多10倍光学变焦的数码相机,但看看它们的CCD参数,CCD面积绝大部分小于1/2.5英寸,从原理图我们得知,这样缩小CCD面积是有效降低成本的一种手段而已(同样结构的机身,几乎所有的高倍光学变焦的数码相机画质都要比同系列的低倍光学变焦相机画质差,也就是这个道理。 上面所说的同样适用于传统的135单反和新兴的数码单反照相机所使用的镜头,有几个名词有必要解释一下:标头,原意是指同人眼放大倍率

14、相同的镜头(35MM-50MM之间),现在已经泛指50MM的定焦镜头,标头所拍摄的照片最接近人眼的视觉,看起来比较自然。焦长比,经常在数码单反上看到这个名词,之所以会出现这个名词,是因为大部分数码单反照相机所使用的APS或者4/3的成像单元,都要比传统的标准135小。依照光学原理,由于较小面积的成像单元所需的成像圈较小,因此成像单元离成像镜片的距离(像距AC)可以设计得比135相机短,较短的成像焦长配合上一样曲光率的镜片,结果是其采像焦长会比标准135来得长,而此焦长增加的倍率,正好与成像单元和35mm底片的对角线长度比一致,称为焦长比。 上面的概念可能比较晦涩难懂,让我们尝试一种通俗一点的理

15、解方式。当被摄物体D、镜头A、焦距AB都不变化,而成像单元C的面积缩小时,就不足以显示整个成像E,此时将成像单元C前移,就可以在C上完整显示E。这时,成像单元C上显示的只是原来标准的135图像的中间一部分,从人眼的视觉来说,是“看起来变大了”,也就是采像焦长变长,实际上,焦距是不变的。当一支镜头,无论是消费类数码相机还是专业型的数码单反照相机所使用的,它只要一制造出来,它就有固定的焦距范围,而无法随意变动,只是由于成像单元的影响,而有了“相当于135系统的*mm*mm”这样的说法,例如如图所示的一款消费数码相机镜头:焦距范围从6.2mm-66.7mm,由于使用了1/1.7寸的成像单元,该成像单元的对角线长度只有标准135相机的2/9,所以该照相机所拍摄的图像“看起来”像是28mm-300mm的采像焦长,但事实上还是6.2mm-66.7mm的照相机镜头的成像。 4、 光圈、快门、ISO和曝光补偿 由最基本的成像原理图我们知道,相机前面所做的一切工作都是为了在C上成像,而这种成像是以时间为单位叠加的,无论是135胶片还是CCD电路,只能在接收了一定程度的物体光线后才能正常的成像。如果接收光线的程度过大,就会造成成像的亮度过大,就是所谓的过曝,反之就是欠曝。所以在凸透镜A前必然有一个可以控制的开关,这个开关就是快门(快门按钮)。而

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号