控制系统时域与频域性能指标的联系

上传人:re****.1 文档编号:506348449 上传时间:2023-10-17 格式:DOC 页数:9 大小:147.50KB
返回 下载 相关 举报
控制系统时域与频域性能指标的联系_第1页
第1页 / 共9页
控制系统时域与频域性能指标的联系_第2页
第2页 / 共9页
控制系统时域与频域性能指标的联系_第3页
第3页 / 共9页
控制系统时域与频域性能指标的联系_第4页
第4页 / 共9页
控制系统时域与频域性能指标的联系_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《控制系统时域与频域性能指标的联系》由会员分享,可在线阅读,更多相关《控制系统时域与频域性能指标的联系(9页珍藏版)》请在金锄头文库上搜索。

1、控制系统时域与频域性能指标的联系经典控制理论中,系统分析与校正方法一般有时域法、复域法、频域法。时域响应法是一种直接法,它以传递函数为系统的数学模型,以拉氏变换为数学工具, 直接可以求出变量的解析解。这种方法虽然直观,分析时域性能十分有用,但是方法的应用需要两个前提,一 是必须已知控制系统的闭环传递函数,另外系统的阶次不能很高。如果系统的开环传递函数未知,或者系统的阶次较高,就需采用频域分析法。 频域分析法不仅是一种通过开环传递函数研究系统闭环传递函数性能的分析方法,而且当系统的数学模型未知时,还可以通过实验的方法建立。此外,大量丰富的图形方法使得频域分析法分析高阶系统时,分析的复杂性并不随阶

2、次的增加而显著增加。在进行控制系统分析时,可以根据实际情况,针对不同数学模型选用最简洁、最合适 的方法,从而使用相应的分析方法,达到预期的实验目的。系统的时域性能指标与频域性能指标有着很大的关系,研究其内在联系在工程中有着 很大的意义。一、系统的时域性能指标延迟时间td阶跃响应第一次达到终值 h(:)的50%所需的时间上升时间tr阶跃响应从终值的10%上升到终值的90%所需的时间;对有振荡的系统,也可定义为从0到第一次达到终值所需的时间峰值时间tp阶跃响应越过终值 h(d)达到第一个峰值所需的时间调节时间ts阶跃响应到达并保持在终值 h(血)的 5%误差带内所需的最短时间超调量二% 峰值h(t

3、p)超出终值h(:)的百分比,即100%二、系统频率特性的性能指标采用频域方法进行线性控制系统设计时,时域内采用的诸如超调量,调整时间等描述系统性能的指标不能直接使用,需要在频域内定义频域性能指标。1零频振幅比M(0):即为0时闭环幅频特性值。它反映了系统的稳态精度,M(0)越接近于1,系统的精度越高。M(0)工1时,表明系统有稳态误差。2、谐振峰值Mr:为幅频特性曲线的 A()的最大值。一般说来,Mr的大小表明闭环控制系统相对稳定性的好坏。Mr越大,表明系统对某个频率的正弦信号反映强烈,有共振倾向,系统的平稳性较差,相应阶跃响应的超调量越大。对应的r为谐振频率。3、谐振频率 r :出现最大值

4、 MmaX寸对应的频率。4、带宽 b幅频特性下降至零频幅比的70.7 %,或下降3dB时对应的频率称为带宽(也成为闭环截止频率)。带宽用于衡量控制系统的快速性,带宽越宽,表明系统复现快速变化信号的能 力越强,阶跃响应的上升时间和调节时间就越短。带宽是控制系统及控制元件的重要性能指标。三、闭环频域性能指标与时域性能指标的关系1、二阶系统的相互联系 对于二阶系统,其频域性能指标和时域性能指标之间有着严格的数学关系(1) 、谐振峰值 Mr和时域超调量之间的关系幅频特性的谐振峰值Mr在二阶系统j (s)=222 中,二1()= s2+2绻 ns%J(q22)2+(2厶妁)2nn令 dM( )=0,得谐

5、振频率 r= n 1-2 2 。 d豹求得幅频特性峰值Mr=12 1- 2PC, -気二阶系统的超调量%=e100%由此可看出,谐振峰值 Mr仅与阻尼比有关,超调量 沙也仅取决于阻尼比。越小,Mr增加的越快,这时超调量;也很大,超过40% 般这样的系统不符和瞬态响 应指标的要求。当0.4 0.707时,无谐振峰值,Mr与二%的对应关系不再存在,通常设计时,取在0.4至0.7之间(2) 、谐振频率国r与峰值时间tp的关系兀tp=tp与 r之积为-n.1-匸由此可看出,当 为常数时,谐振频率 r与峰值时间 tp成反比, r值愈大,tp 愈小,表示系统时间响应愈快(3) 、闭环谐振峰值 Mr和相角裕

6、度Y的关系(j )=MC )ej() G(j )=A( )ej _j 钦 W)j(180-?)G(j c)=A( c)e =A( c)e =A( c)(-cos -j sin )=180+ ( c)( c)=1800-M( c)二Gg)A c)1+Gg)|1-Ag c)cos* -jA c)si n ?般Mr极大值发生在-附近。dM ( )dA( )=0 二 A()1sin=Mr1sin故Mr sin在开环截止频率-c附近,上述近似程度就越高。(4) 、/和亍的关系G(j -)=2n=1 G(j Oj c(j .c+2.n)2一 =1 1 =:2 2 2;.-:(;:c +4 - n2: n

7、,c1/ 2-=.4i-22:?nco cco c= 18O0+(-9O0-arctg .)=90-arctg . 二arctg2 纭n23n得出=arctg2,1 1,4 4+1-2对于二阶系统,一般要求:300 v7O0 二 0.27 0.82、带宽,b与时域性能的关系(1 )、一阶系统1一阶系统的闭环传递函数为(s)=1+TS系统的闭环频率特性为(j .)=11+Tj 系统的闭环幅频特性为 M ()=|%)二f 2 2瞥1+T22可知, = 0时幅值为1,即零频振幅比 M(0) = 1,则 L(0) = 20LgM(0) = _0闭环截止频率-b :由“的定义知 L(、)= L(0) -

8、 3=-320LgM ( b)=20 Lg1 1+T2b2=-31Mb)/=0707可解得:b=1/T阶系统中调节时间、上升时间与带宽的关系tr=2.2T ts=3T 一 tr=2.2/ b, ts=3/ b(2 )、二阶系统标准二阶系统的开环传递函数为G(s)=s(s+2n)二阶系统的闭环传递函数为(s)二2n闭环频率特性为*(jco)=2 2n n(血)2+j 2三国幅+ (0n2 42 +j 2匕豹悄-2系统的闭环幅频特性为2.尬nMg)=咖)=亏J(4)+(2 -co)S2 +2,nS+ n2可知, -=0时幅值为1,即零频振幅比 M(0) = 1, 则 L(0) = 20LgM(0)

9、 = _0闭环截止频率 b 由的定义知L( ,) =L(0) -3=-3可解得:M(“)=2-n=0.707、(.nt J)2 +(2 I,;: J扣匕2+歼2响2+1阻尼比不变,自然振荡频率越大,带宽越大;自然振荡频率不变,阻尼比越小,带宽越大; 可知带宽与系统响应速度成正比!(3)、带宽茂b与调节时间ts的关系调整时间b=(1-2 2+(1-22)2+1b与ts 之积为 Its二荽 J1-22 + J2-4/+ 瘁由此可看出,当阻尼比给定后,闭环截止频率b与过渡过程时间ts成反比关系。换言之, b愈大(频带宽度0 - b愈宽),系统的响应速度愈快。(4) 、系统带宽的选择带宽频率是一项重要

10、指标。其选择要求要既能以所需精度跟踪输入信号,又能拟制噪声扰动信号。在控制系统实际运行中,输入信号一般是低频信号,而噪声信号是高频信号。(5) 、带宽指标取决于下列因素:a)对输入信号的再现能力。大的带宽相应于小的上升时间,即相应于快速特性。粗略地说,带宽与响应速度成正比。b)对高频噪声必要的滤波特性。为了使系统能够精确地跟踪任意输入信号,系统必须具有大的带宽。 但是,从噪声的观点来看,带宽不应当太大。因此,对带宽的要求是矛盾的,好的设计通常需要折衷考虑。具 有大带宽的系统需要高性能的元件,因此,元件的成本通常随着带宽的增加而增大。3、典型二阶系统频域指标与时域指标的关系 闭环频域指标:Mr

11、=. 1-2 2,b=,、(1-2 2)+2-4 2+4-=.471-2闭环阶跃响应时域指标:;=e - 100% tp=二/,dh/(,n、1- 2) tr =(二-:)/ d =(二-:)/(,n. 1- 2)3 5ts= C:=0.05,0v V0.9)-因此,若知道频域指标中的任两个,就可解算出 -,从而求出时域指标。反之,给出7时域指标的任两个,就可确定闭环频域指标。Mr- Mr 2-1 l 2一Mr+ Mr -11汇 100%-2 ,ts 2,相对稳定性好,超调小,振荡次数少。,5不变时,-,tr ,tp ,系统灵敏度下降。不变时,、,5 ,系统灵敏,速度快。4、高阶系统频域指标与时域指标1谐振峰值 Mr =sin ;超调量 二=0.16+0.4(Mr-1) 1 乞 Mr 乞1.8Ktt调节时间ts=K=2+1.5(Mr-1)+2.5(Mr-1)2 1 1.8c欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议, 策划案计划书,学习资料等等打造全网一站式需求

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 活动策划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号