2019精选医学基因工程第二章基因工程的载体和工具酶

上传人:新** 文档编号:506298014 上传时间:2022-12-28 格式:DOC 页数:5 大小:87.50KB
返回 下载 相关 举报
2019精选医学基因工程第二章基因工程的载体和工具酶_第1页
第1页 / 共5页
2019精选医学基因工程第二章基因工程的载体和工具酶_第2页
第2页 / 共5页
2019精选医学基因工程第二章基因工程的载体和工具酶_第3页
第3页 / 共5页
2019精选医学基因工程第二章基因工程的载体和工具酶_第4页
第4页 / 共5页
2019精选医学基因工程第二章基因工程的载体和工具酶_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《2019精选医学基因工程第二章基因工程的载体和工具酶》由会员分享,可在线阅读,更多相关《2019精选医学基因工程第二章基因工程的载体和工具酶(5页珍藏版)》请在金锄头文库上搜索。

1、第二章基因工程的载体和工具酶第一节载体引言基因克隆的本质是使目的基因在特定的条件下得到扩增和表达,而目的基因本身无法进行复制和表达、不易进入受体细胞、不能稳定维持,所以就必须借助于载体”及其寄主细胞”来实现。作为基因克隆的载体必须具备以下特性:载体必须是复制子。具有合适的筛选标记,便于重组子的筛选。具备多克隆位点(MCS),便于外源基因插入。自身分子量较小,拷贝数高。在宿主细胞内稳定性高。一、质粒载体(一)质粒的生物学特性(1)质粒是独立于染色体以外的能自主复制的裸露的双链环状(少数为线形和RNA)DNA分子。广泛从在于细菌细胞中,比病毒更简单。在霉菌、蓝藻、酵母和一些动植物细胞中也发现了质粒

2、,目前对细菌的质粒研究得比较深入,特别是大肠杆菌的质粒。大肠杆菌的质粒主要有F质粒(F因子)、R质粒(抗药性因子)和Col质粒(大肠杆菌素因子)三种。(2)质粒的大小差异很大,最小的只有1kb,只能编码中等大小的2-3种蛋白质分子,最大的达到200kb。(3)质粒的生存在寄主细胞中友好”地借居”离开了寄主它本身无法复制;同时质粒往往有宿主专一性,如大肠杆菌的复制起点不一定能在其它生物细胞中繁殖。(4)质粒的复制类型一种质粒在宿主细胞中存在的数目称为该质粒的拷贝数。据拷贝数将质粒分为两种复制型:严紧型”质粒(stigentplasmid),拷贝数为1-3;松弛型质粒(relaxedplasmid

3、),拷贝数为10-60。不过即使是同一质粒,其拷贝数在不同的寄主细胞间和不同的生长环境也可能有很大的变化。(5)质粒的不亲和性两种亲缘关系密切的不同质粒不能在同一宿主细胞中稳定共存。载体质粒与受体的质粒应是不同的不亲和群。质粒的转移转移性质粒,含有tra基因;能通过结合作用从一个细胞转移到另一个细胞。非转移性质粒,不含tra基因;可以为转移性质粒所带动转移。(7)质粒的存在形式有超螺旋、开环双螺旋和线状双螺旋三种,(二)质粒DNA的制备有多种分离质粒的方法,如碱裂解法、煮沸裂解法、层析柱过滤法等。目前一般使用碱变性法制备质粒DNA。这个方法主要包括培养收集细菌菌体,裂解细胞,将质粒DNA与染色

4、体DNA分开及除去蛋白质和RNA。1. 碱变性法质粒提取的原理:根据共价闭合环状质粒DNA与线性染色体DNA片断之间,在拓扑学上的差异而发展出来的。在pH值12.012.5范围内时,线性的DNA会被变性而共价闭合环状质粒DNA却不会被变性。通过冷却或恢复中性pH值使之复性,线性染色体形成网状结构,而cccDNA可以准确迅速复性,通过离心去除线性染色体,获得含有cccDNA的上清液,最后用乙醇沉淀,获得质粒DNA。2. 碱变性法提取质粒的步骤:(1)取1.5毫升含质粒的大肠杆菌过夜培养物,加在微量离心管中,离心收集细胞沉淀;(2)加入100微升冰冷的溶液I,(50mM葡萄糖,25mMTris-H

5、ClPH=8.0,10mMEDTA)涡旋震荡悬浮菌液。(3)加入200微升新配制的溶液II,(0.2MNaOH,1.0%SDS)缓缓混匀置室温5分钟。(4)加入150毫升冰冷的溶液III,(醋酸钾29.4克,冰乙酸11.5毫升,加蒸馏水至100毫升)颠倒离心管10次后,冰浴5分钟。(5)离心的上清液用苯酚抽提数次,用乙醇沉淀收集质粒DNA。(三)质粒载体的改造去掉不必要的DNA区段。减少限制酶的识别位点,一种酶只保留一个。(单一的限制性酶切位点)。加入易于捡出的选择性标记基因。对质粒进行安全性改造,要求质粒不能随便转移。改造或增加基因表达的调控序列。1质粒pBR322结构:(1) 氨苄青霉素抗

6、性基因(ampr或Apr)内部有3种限制酶单一识别位点。(2) 四环素抗性基因(tetr或Tcr)内部有7种,启动区内有2种限制酶单一识别位点。DNA复制起点(ori)pBR322质粒的优点:(1) 具有较小的分子量。(2) 4363bp,2.6X106Da,具有两种抗菌素抗性基因可供作转化子的选择记号。(3) 具较高的拷贝数,而且经过氯霉素扩增之后,每个细胞中可累积10003000个拷贝。(4) 对多种常见的限制性内切核酸酶只含有一个能切割的位点。2、pUC质粒载体1987年,J.Messing和J.Vieria采用MCS技术在pBR322基础上构建的。结构:(1) 来自于pBR322的Or

7、i氨苄青霉素的抗性基因(ampr)。但核苷酸序列发生了变化LacZ基因编码B半乳糖酶的a肽链即氨基末端。(2) MCS区段是一段用于插入外源DNA片段的特定区域,由一系列的紧密相连的限制性内切酶位点组成,而且每个限制性内切酶位点在整个载体中是唯一的。与pBR322相比,pUC质粒载体优点:(1) 具有更小的分子量和更高的拷贝数(2) 女口pUC8为2750bp,pUCI8为2686bp,控制质粒复制rop基因的缺失,平均每个细胞即可达500700个拷贝适用于组织化学法检测重组体通过:-互补作用,利用菌落颜色筛选重组子。(3) 具有多克隆位点区段(MCS)可以定向克隆防止载体自我连接。二、噬菌体

8、载体-噬菌体载体噬菌体的生物学特性烈性噬菌体:只具有溶菌生长周期温和噬菌体:具有溶源生长周期和溶菌生长周期溶菌周期指噬菌体将DNA注入寄主细胞后很快环化,然后进行自我复制、蛋白衣壳合成和新噬菌体颗粒的组装,最后使寄主细胞破裂而释放岀大量的子代噬菌体。溶源周期中,注入寄主细胞的噬菌体DNA是整合到寄主细胞染色体上并可以随着寄主细胞的分裂而进行复制。整合了一套完整的噬菌体基因组的细菌被称为溶源性细菌。在溶源性细菌内存在的整合或非整合的噬菌体DNA被称为原噬菌体。噬菌体的生物学特性组成:蛋白质外壳和线状双链DNA分子组成。DNA长度为48502bp,在分子两端各有12个碱基的单链互补粘性末端。当其注

9、入到寄主细胞中后,可以迅速通过这两个粘性末端的互补作用形成双链的环形DNA分子。上述通过粘性末端互补形成的双链区被称为cos位点(cohesiveendsite).是一个温和噬菌体一般以溶源生长进行增殖,胁迫条件下也会进入溶菌生长周期。复制溶源周期随溶源细菌染色体一起复制溶菌周期的早期是9复制,晚期进行滚环复制基因组成DNA至少包括61个基因,大多基因按功能相似性成簇排列,其中一部分为噬菌体生命活动的必须基因,另一部分约1/3为非必须区段。噬菌体载体的类型插入型(Insertionvectors)这种载体仅仅有一个可供外源DNA插入的克隆位点。如:入gt1O、入gt11克隆能力小,不到1Okb

10、置换型(Replacementvectors)这种载体具有两个对应的酶切克隆位点,在两个位点之间的入DNA区段是入噬菌体的非必需序列,可以被外源插入的DNA取代。如Charon4载体克隆能力大,2025kb(二)M13噬菌体1、丝状噬菌体M13噬菌体的生物学特性是单链闭合环状噬菌体只能感染雄性细菌,外形成丝状,基因组DNA长约6.4kb,可分为10个区和507bp基因间隔区(IS区),该区可以接受外源DNA的插入而不会影响到噬菌体的活力。这是该噬菌体能用于单链DNA载体的重要前提。复制与增殖(图)M13噬菌体载体的构建在IS区内插入LacZ基因在标记基因区内组装MCS区段所以能通过:互补在X-

11、Gal/IPTG平板上识别重组体。这类载体包括了M13mp8、9和M13mp18、19等这类载体的突岀优点在于其既可以提供单链DNA,也可以提供双链的DNA。其最大的不足在于插入大的DNA片段后表现不稳定,在噬菌体增殖过程中容易发生缺失。所以一般克隆的片段在1kb之内,克隆300-400bp的片段十分稳定。(三)柯斯质粒载体柯斯质粒载体的特点柯斯质粒是一类人工构建的含有DNA的cos序列和质粒复制子的特殊类型的质粒载体,cosmid是cossitecarryingplasmid的缩写。柯斯质粒的大小为4-6kb,由3部分组成:A. 多克隆位点区B. 含有cos位点的DNA区复制起始位点和抗性标

12、记区柯斯质粒载体的特性1、具有噬菌体的特性柯斯质粒连接上适宜长度的外源DNA后可以在体外包装成噬菌体颗粒,并能高效转导寄主细胞。进入寄主细胞的DNA也能环化和复制,但是不会形成新的噬菌体颗粒,也不能发生溶菌现象。2、具有质粒载体的特性能象质粒一样在寄主细胞内复制,且带有抗性选择标记基因,有些还带有插入失活型的多克隆位点,为重组体的筛选提供了方便。3、高容量的克隆能力cos质粒本身很小,只有复制起点、选择标记和cos位点等构成,所以其克隆上限可达45kb左右。不过由于包装的限制,其克隆片段至少要达到30kb。四种常用载体的比较质粒入噬菌体柯斯质粒单链噬菌体克隆DNA大片段*+-构建基因组文库-+

13、-构建DNA文库+-常规的亚克隆化+-构建新型的DNA结构+-序列分析+-+单链探针+*-+外源基因在大肠杆菌中的表达+-第二节基因操作的工具酶一、限制性核酸内切酶及其应用(一)限制性核酸内切酶的发现当入(k)噬菌体侵染E.coliB时,由于其DNA中有EcoB核酸酶特异识别的碱基序列,被降解掉。而E.coliB的DNA中虽然也存在这种特异序列,但可在EcoB甲基化酶的作用下,催化S-腺苷甲硫氨酸(SAM)将甲基转移给限制酶识别序列的特定碱基,使之甲基化。EcoB核酸酶不能识别已甲基化的序列。最早分离出的限制内切酶是在1968年,Meselson和Yuan,大肠杆菌B和K菌株,EcoB和Eco

14、K,是I型的,没有实用价值。首个II型限制内切酶是在1970年,由H.O.Smith等从Heamophilusinfluenzae的Rd菌株中HindII。使得DNA分子的体外精确切割成为可能。从此,相关研究展开。如NEB公司的提取和克隆。目前已纯化出3000种限制性内切酶中,其中有30%是在NEB发现的。限制性核酸内切酶(restrictionendonuclease):是一类能够识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核酸内切酶。切开的是3,5磷酸二酯键。(二)限制性核酸内切酶的分类分为I型、II型和III型。(三)限制性核酸内切酶的命名1、寄主菌属名的第一个字

15、母和种名的头两个字母组成3个斜体字母的略语表示酶来源的菌种名称,如大肠杆菌Escherichiacoli表示为Eco,流感嗜血菌Haemophilusinfluenzae表示为Hin;2、用一个正体字母表示菌株的类型,比如EcoR、Hind;3、如果一种特殊的寄主菌株具有几个不同的限制修饰体系,则用罗马数字标出,比如EcoRI、HindIII。(四)II型限制性核酸内切酶的基本特性1、识别位点的特异性每种酶都有其特定的DNA识别位点,通常是由48个核苷酸组成的特定序列(靶序列)。2、识别序列的对称性靶序列通常具有双重旋转对称的结构,即双链的核苷酸顺序呈回文结构。3、切割位点的规范性交错切或对称切(可形成粘性末端或平末端的DNA分子)。与II型核酸内切酶有关的几个概念粘性末端:cohesiveends是指DNA分子在限制酶的作用之下形成的具有互补碱基的单链延伸末端结构,它们能够通过互补碱基间的配对而重新环化起来。平末端:Bluntend在识别序列对称处同时切开DNA分子两条链,产生的平齐末端结构。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 活动策划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号