同济第六版《高等数学》教案WORD版-第06章 定积分的应用

上传人:新** 文档编号:506294702 上传时间:2023-07-05 格式:DOC 页数:7 大小:41.50KB
返回 下载 相关 举报
同济第六版《高等数学》教案WORD版-第06章 定积分的应用_第1页
第1页 / 共7页
同济第六版《高等数学》教案WORD版-第06章 定积分的应用_第2页
第2页 / 共7页
同济第六版《高等数学》教案WORD版-第06章 定积分的应用_第3页
第3页 / 共7页
同济第六版《高等数学》教案WORD版-第06章 定积分的应用_第4页
第4页 / 共7页
同济第六版《高等数学》教案WORD版-第06章 定积分的应用_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《同济第六版《高等数学》教案WORD版-第06章 定积分的应用》由会员分享,可在线阅读,更多相关《同济第六版《高等数学》教案WORD版-第06章 定积分的应用(7页珍藏版)》请在金锄头文库上搜索。

1、高等数学教案 6 定积分的应用 第六章 定积分的应用 教学目的1、理解元素法的基本思想;2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积).3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等).教学重点:1、 计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积.2、计算变力所做的功、引力、压力和函数的平均值等。教学难点:1、 截面面积为已知的立体体积。 2、引力。6. 1 定积分的元素法 回忆曲边梯形的面积: 设y=f (x)0 (xa, b). 如果说积分,是以

2、a, b为底的曲边梯形的面积, 则积分上限函数就是以a, x为底的曲边梯形的面积. 而微分dA(x)=f (x)dx 表示点x处以dx为宽的小曲边梯形面积的近似值DAf (x)dx, f (x)dx称为曲边梯形的面积元素. 以a, b为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式, 以a, b为积分区间的定积分: . 一般情况下, 为求某一量U, 先将此量分布在某一区间a, b上, 分布在a, x上的量用函数U(x)表示, 再求这一量的元素dU(x), 设dU(x)=u(x)dx, 然后以u(x)dx为被积表达式, 以a, b为积分区间求定积分即得. 用这一方法求一量的值的方法称

3、为微元法(或元素法). 6. 2 定积分在几何上的应用 一、平面图形的面积 1直角坐标情形 设平面图形由上下两条曲线y=f上(x)与y=f下(x)及左右两条直线x=a与x=b所围成, 则面积元素为f上(x)- f下(x)dx, 于是平面图形的面积为 . 类似地, 由左右两条曲线x=j左(y)与x=j右(y)及上下两条直线y=d与y=c所围成设平面图形的面积为 . 例1 计算抛物线y2=x、y=x2所围成的图形的面积. 解 (1)画图. (2)确定在x轴上的投影区间: 0, 1. (3)确定上下曲线: . (4)计算积分 . 例2 计算抛物线y2=2x与直线y=x-4所围成的图形的面积. 解 (

4、1)画图. (2)确定在y轴上的投影区间: -2, 4. (3)确定左右曲线: . (4)计算积分. 例3 求椭圆所围成的图形的面积. 解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为0, a. 因为面积元素为ydx, 所以.椭圆的参数方程为:x=a cos t , y=b sin t , 于是 . 2极坐标情形 曲边扇形及曲边扇形的面积元素: 由曲线r=j(q)及射线q =a, q =b围成的图形称为曲边扇形. 曲边扇形的面积元素为. 曲边扇形的面积为. 例4。 计算阿基米德螺线r=aq (a 0)上相应于q从0变到2p 的一段弧与极轴所围成的图形的

5、面积. 解: . 例5。 计算心形线r=a(1+cosq ) (a0) 所围成的图形的面积. 解: . 二、体 积 1旋转体的体积 旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体. 这直线叫做旋转轴. 常见的旋转体: 圆柱、圆锥、圆台、球体. 旋转体都可以看作是由连续曲线y=f (x)、直线x=a 、a=b 及x轴所围成的曲边梯形绕x轴旋转一周而成的立体. 设过区间a, b内点x 且垂直于x轴的平面左侧的旋转体的体积为V (x), 当平面左右平移dx后, 体积的增量近似为DV=pf (x)2dx , 于是体积元素为 dV = pf (x)2dx , 旋转体的体积为 . 例1 连接

6、坐标原点O及点P(h, r)的直线、直线x=h 及x 轴围成一个直角三角形. 将它绕x轴旋转构成一个底半径为r、高为h的圆锥体. 计算这圆锥体的体积. 解: 直角三角形斜边的直线方程为. 所求圆锥体的体积为 . 例2. 计算由椭圆所成的图形绕x轴旋转而成的旋转体(旋转椭球体)的体积. 解: 这个旋转椭球体也可以看作是由半个椭圆及x轴围成的图形绕x轴旋转而成的立体. 体积元素为dV= p y 2dx , 于是所求旋转椭球体的体积为 . 例3 计算由摆线x=a(t-sin t), y=a(1-cos t)的一拱, 直线y=0所围成的图形分别绕x轴、y轴旋转而成的旋转体的体积. 解 所给图形绕x轴旋

7、转而成的旋转体的体积为 =5p 2a 3. 所给图形绕y轴旋转而成的旋转体的体积是两个旋转体体积的差. 设曲线左半边为x=x1(y)、右半边为x=x2(y). 则 =6p 3a 3 . 2平行截面面积为已知的立体的体积 设立体在x轴的投影区间为a, b, 过点x 且垂直于x轴的平面与立体相截, 截面面积为A(x), 则体积元素为A(x)dx , 立体的体积为 . 例4 一平面经过半径为R的圆柱体的底圆中心, 并与底面交成角a. 计算这平面截圆柱所得立体的体积. 解: 取这平面与圆柱体的底面的交线为x轴, 底面上过圆中心、且垂直于x轴的直线为y轴. 那么底圆的方程为x 2 +y 2=R 2. 立

8、体中过点x且垂直于x轴的截面是一个直角三角形. 两个直角边分别为及. 因而截面积为. 于是所求的立体体积为 . 例5. 求以半径为R的圆为底、平行且等于底圆直径的线段为顶、高为h的正劈锥体的体积. 解: 取底圆所在的平面为x O y 平面, 圆心为原点, 并使x轴与正劈锥的顶平行. 底圆的方程为x 2 +y 2=R 2. 过x轴上的点x (-RxR)作垂直于x轴的平面, 截正劈锥体得等腰三角形. 这截面的面积为 . 于是所求正劈锥体的体积为 . 三、平面曲线的弧长 设A, B 是曲线弧上的两个端点. 在弧AB上任取分点A=M0, M1, M2, , Mi-1, Mi, , Mn-1, Mn=B

9、 , 并依次连接相邻的分点得一内接折线. 当分点的数目无限增加且每个小段Mi-1Mi都缩向一点时, 如果此折线的长的极限存在, 则称此极限为曲线弧AB的弧长, 并称此曲线弧AB是可求长的. 定理 光滑曲线弧是可求长的. 1直角坐标情形 设曲线弧由直角坐标方程y=f(x) (axb)给出, 其中f(x)在区间a, b上具有一阶连续导数. 现在来计算这曲线弧的长度. 取横坐标x为积分变量, 它的变化区间为a, b. 曲线y=f(x)上相应于a, b上任一小区间x, x+dx的一段弧的长度, 可以用该曲线在点(x, f(x)处的切线上相应的一小段的长度来近似代替. 而切线上这相应的小段的长度为, 从

10、而得弧长元素(即弧微分). 以为被积表达式, 在闭区间a, b上作定积分, 便得所求的弧长为. 在曲率一节中, 我们已经知道弧微分的表达式为, 这也就是弧长元素. 因此 例1. 计算曲线上相应于x从a到b的一段弧的长度. 解: , 从而弧长元素. 因此, 所求弧长为. 例2. 计算悬链线上介于x=-b与x=b之间一段弧的长度. 解: , 从而弧长元素为. 因此, 所求弧长为. 2参数方程情形 设曲线弧由参数方程x=j(t)、y=y(t) (atb )给出, 其中j(t)、y(t)在a, b上具有连续导数. 因为, dx=j(t)d t , 所以弧长元素为.所求弧长为. 例3. 计算摆线x=a(

11、q-sinq), y=a(1-cosq)的一拱(0 q 2p )的长度. 解: 弧长元素为. 所求弧长为=8a. 3极坐标情形 设曲线弧由极坐标方程r=r(q) (a q b )给出, 其中r(q)在a, b上具有连续导数. 由直角坐标与极坐标的关系可得 x=r(q)cosq , y=r(q)sinq(a q b ).于是得弧长元素为. 从而所求弧长为. 例14. 求阿基米德螺线r=aq (a0)相应于q 从0到2p 一段的弧长. 解: 弧长元素为.于是所求弧长为. 6. 3 功 水压力和引力 一、变力沿直线所作的功 例1 把一个带+q电量的点电荷放在r轴上坐标原点O处, 它产生一个电场. 这

12、个电场对周围的电荷有作用力. 由物理学知道, 如果有一个单位正电荷放在这个电场中距离原点O为r的地方, 那么电场对它的作用力的大小为 (k是常数). 当这个单位正电荷在电场中从r=a处沿r轴移动到r=b(ab)处时, 计算电场力F对它所作的功. 例1 电量为+q的点电荷位于r轴的坐标原点O处它所产生的电场力使r轴上的一个单位正电荷从r=a处移动到r=b(ab)处求电场力对单位正电荷所作的功. 提示: 由物理学知道, 在电量为+q的点电荷所产生的电场中, 距离点电荷r处的单位正电荷所受到的电场力的大小为 (k是常数). 解: 在r轴上, 当单位正电荷从r移动到r+dr时, 电场力对它所作的功近似

13、为, 即功元素为. 于是所求的功为. 例2. 在底面积为S的圆柱形容器中盛有一定量的气体. 在等温条件下, 由于气体的膨胀, 把容器中的一个活塞(面积为S)从点a处推移到点b处. 计算在移动过程中, 气体压力所作的功. 解: 取坐标系如图, 活塞的位置可以用坐标x来表示. 由物理学知道, 一定量的气体在等温条件下, 压强p与体积V的乘积是常数k , 即 pV=k 或. 解: 在点x处, 因为V=xS, 所以作在活塞上的力为. 当活塞从x移动到x+dx时, 变力所作的功近似为,即功元素为. 于是所求的功为. 例3. 一圆柱形的贮水桶高为5m, 底圆半径为3m, 桶内盛满了水. 试问要把桶内的水全部吸出需作多少功? 解: 作x轴如图. 取深度x 为积分变量. 它的变化区间为0, 5, 相应于0, 5上任小区间x, x+dx的一薄层水的高度为dx. 水的比重为9.8kN/m3, 因此如x的单位为m, 这薄层水的重力为9.8p32dx. 这薄层水吸出桶外需作的功近似地为dW=88.2pxdx, 此

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 创业/孵化

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号