LLC谐振变换器及L6599原理

上传人:公**** 文档编号:506258576 上传时间:2024-01-17 格式:DOCX 页数:16 大小:766KB
返回 下载 相关 举报
LLC谐振变换器及L6599原理_第1页
第1页 / 共16页
LLC谐振变换器及L6599原理_第2页
第2页 / 共16页
LLC谐振变换器及L6599原理_第3页
第3页 / 共16页
LLC谐振变换器及L6599原理_第4页
第4页 / 共16页
LLC谐振变换器及L6599原理_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《LLC谐振变换器及L6599原理》由会员分享,可在线阅读,更多相关《LLC谐振变换器及L6599原理(16页珍藏版)》请在金锄头文库上搜索。

1、目录引言一、LLC谐振变换器原理2二、LLC谐振腔之元件设计.3三、L6598L6599芯片资料错误!未定义书签。1、 L6599芯片介绍错误!未定义书签。2、芯片与典型方框图53、PIN脚功能54、典型电源系统图65、振荡器76、工作在轻载或无载时8四、L6599的工作流程1、L6599供电回路82、L6599的启动93、L6599稳压原理104、L6599的SCP保护及次级OCP保护11附:过流延时保护电路12引言随着开关电源的发展,软开关技术得到了广泛的发展和应用,已研究出了不少高效率的电路拓扑,主 要为谐振型的软开关拓扑和PWM型的软开关拓扑。近几年来,随着半导体器件制造技术的发展,开

2、关管 的导通电阻,寄生电容和反向恢复时间越来越小了,这为谐振变换器的发展提供了又一次机遇。对于谐振 变换器来说,如果设计得当,能实现软开关变换,从而使得开关电源具有较高的效率LLC谐振变换器实 际上来源于不对称半桥电路,后者用调宽型(PWM)控制,而LLC谐振是调频型(PFM)。图一和图二分别给出了 LLC谐振变换器的电路图和工作波形。图一中包括两个功率MOSFET(S1和S2), 其占空比都为0.5;谐振电容Cs,副边匝数相等的中心抽头变压器Tr,Tr的漏感Ls,激磁电感Lm,Lm在 某个时间段也是一个谐振电感,因此,在LLC谐振变换器中的谐振元件主要由以上3个谐振元件构成,即 谐振电容Cs

3、,电感Ls和激磁电感Lm;半桥全波整流二极管D1和D2,输出电容Cf。LLC变换器的稳态工 作原理如下:1) tl, 12当t=tl时,S2关断,谐振电流给S1的寄生电容放电,一直到S1上的电压为零,然后 S1的体内二级管导通。此阶段D1导通,Lm上的电压被输出电压钳位,因此,只有Ls和Cs参与谐振。2) 12, 13当1=12时,S1在零电压的条件下导通,变压器原边承受正向电压;D1继续导通,S2及 D2截止。此时Cs和Ls参与谐振,而Lm不参与谐振。3) 13, 14当1=13时,S1仍然导通,而D1与D2处于关断状态,Tr副边与电路脱开,此时Lm, Ls 和Cs 一起参与谐振。实际电路中

4、LmLs,因此,在这个阶段可以认为激磁电流和谐振电流都保持不变。4) 14, 15当1=14时,S1关断,谐振电流给S2的寄生电容放电,一直到S2上的电压为零,然后 S2的体内二级管导通。此阶段D2导通,Lm上的电压被输出电压钳位,因此,只有Ls和Cs参与谐振。5) 15, 16当1=15时,S2在零电压的条件下导通,Tr原边承受反向电压;D2继续导通,而S1和 D1截止。此时仅Cs和Ls参与谐振,Lm上的电压被输出电压箝位,而不参与谐振。6)16, 17当1=16时,S2仍然导通,而D1和D2处于关断状态,Tr副边与电路脱开,此时Lm,Ls和Cs 一起参与谐振。实际电路中LmLs,因此,在这

5、个阶段可以认为激磁电流和谐振电流都保持不变。通过上面的详细分析,对LLC软开关型变换器的工作原理及其特性有了一定的了解,下面介绍如何 设计谐振腔之元件,进一步加深对它们的认识。二、LLC谐振腔之元件设计谐振腔之元件包括功率开关管MOSFET,谐振电容器Cr,谐振电感Lr和隔离变压器T1, 一般情况谐振 电感Lr是采用隔离变压器T1的漏感。1.匝比:n =2 谐振电容器CrVinnor2 Vo - norCr 二o-4nf(V- nV )minc 一 maxo 一 nor3.谐振电感Lr:Lr 二4.变压器初级感量Lm:f /f . - 1 TomtnL4 1 - V (2nV ) sin 一

6、mino 一 max5.最大谐振频率fmax:max1 +匕:1 + T1s1V.2nV丿o - min 6初级电流有效值:Ip ,RMSonV12 L f 丿m o说明:V.,innorin-minVinmax :输入电压额定值、最小值和最大值;V ,onorVominVomax :输出电压额定值、最小值和最大值;I。:输出电流额定值;在普通条件下设计者给定的开关频率fo:输出电流额定值;在普通条件下设计者给定的开关频率fmin:设计者给定的最小开关频率Vcmax :振荡电容Cs上最大允许电压n :变压器初级与次级的变比振荡电容 振荡电感激磁电感max最大开关频率【pRMS :初级电流有效值

7、三、L6598L6599芯片资料1、L6599芯片介绍意法半导体(ST)日前推出一个专门为串联谐振半桥拓扑设计的双终接控制器芯片L6598,该芯片支持 保护全面和高可靠性的电源设计,特别适用于液晶电视和等离子电视的电源、便携电脑和游戏机的高端适 配器、80+ initiative-兼容ATX电源和电信设备开关电源。L6599在上一代产品L6598的基础上新增多种功能,如直接连接功率因数校正器(PFC)的专用输出、两 级过流保护(0CP)、自锁禁止输入、轻负载突发模式操作和一个上电/断电顺序或欠压保护输入。新产品工作在50%互补性占空比下,插入一个固定的死区时间,以确保软开关操作。支持高频开关(

8、最 高500kHz),能效高,电磁干扰(EMI)辐射低。为了采用自举方法驱动上桥臂开关,新产品整合了一个能够 承受600V以上电压的高压浮动结构和一个同步驱动式高压横向双扩散金属氧化物半导体(LDMOS)器件,节省了一个外部快速恢复自举二极管。L6599为两个栅驱动器提供一个输出电流0.6A和输入电流1.2A的典型峰值电流处理能力,使设计人 员能够利用一个外部可编程振荡器设定工作频率。非线性软启动可防止涌流,最大限度抑制输出电压过冲。 这个器件还有一个可控制的突发模式操作,能够大幅度降低在轻负载和无负载条件下的平均开关频率和相 关损耗。利用这个谐振控制器,设计人员甚至可以在功率校正系统内满足节

9、能要求。在突发模式操作期间,一 个专用输出使IC能够关断功率因数校正器(PFC)的预稳压器,以降低这部分电路的无负载功耗。L6599的其它重要特性包括低功耗(6 V, DIS2 V,ISEN1.5 V, DELAY2 V 对电容放电,为下次启动进 行软启动准备。2DELAY延迟保护时间设定。通过电容电阻并联后到地。可调节芯片在过流的保护时间与去掉 故障的重新恢复时间。当Isen检测电压超过0.8 V,内部对电容进行150“A恒流充 电,电容也通过电阻进行放电,平常维持在2V左右。当电压超过3.5V,内部关闭对电容的充电,冋时芯片关闭振荡,停止开关工作,达到电路保护作用,当电容通过电 阻放电至0

10、.3V时,芯片重新工作。3CF定时电容。通过内部电流源进行充放电,确定工作的开关频率。4Rfmin最小振荡频率设定。提供一个2V基准电压和一个接地的电阻来设定最小振荡频率。连 接电压反馈回路中的光耦器,还可以根据输出电压大小调整振荡频率。光耦器必须由 一个电阻连接,这个电压确定最大工作频率。与软启动端,接有R-C回路,用于启动 时的振荡频率调整,达到软件启动功能,减少启动浪涌电流。5STBY待机模式(脉冲工作模式设定)。通过回馈回来的电压与内部基准Q.25V)比较,当 低于基准电压时,进行待机模式,要恢复正常模式,需要高于基准50 mV。可以通过 外接电阻、接插口来设定其进行待机模式时的输出电

11、流值。6Isen电流检测端。通过一个电阻或一个电容进行初级电流的无损检测。此功能不能进行单 周期控制,所以需要将电压信号转化成平均电流信号。当电压值超过0.8V (可能有50 mV的回差),Pin1的软启动电容通过内部放电,贝振荡频率会上升,因此限制了电源 的输出功率。7Line输入限值检查。通过电阻分压结构接到AC或DC高压端,电容是用来旁路噪声干扰。当 电压低于1.25 V时,关闭(不锁定)IC,对软件启动电容放电。重新恢复工作,电压需 要大于1.25V。内部比较器具有15p A迟滞作用。正常工作一般将此电压设在1.25-6V 之间。8DIS故障锁死。内部连接一个比较器,当电压超过1.85

12、V时关闭IC,能耗降低到启动前的 水平。不用可以直接接地。9PFC_STOPPFC关闭控制端。正常时为开路,在待机时,有意关闭PFC控制器,降低芯片的损 耗(DIS2 V, ISEN1.5 V, LINE6 V and STBYv1.25V.)。当 DELAY 电压超过 2V 和后面开路引起电压低于0.3V,也会启动此功能。不使用可以开路此引脚。10GND接地端11LVG低端驱动输出端。接半桥电路的下管,与地之间具有拉0.3 A min,推0.8 A min的驱 动能力。12VCC电源供电端。主要供IC中的信号回路和下管驱动。有时需要接一个电容(0.1 pF typ.) 到地,以获取干净的电源

13、电压。13N.C高压空脚。该引脚没有内部连接,是用来隔离高压引脚用。符合安规要求PCB上的 爬电距离)14OUT咼端驱动输出公共端15HVG高端驱动输出端。接半桥电路的上管,与Pin14之间具有拉0.3 A min,推0.8 A min 的驱动能力。内部与Pin 14之间有一个电阻确保电压不浮动。16VBOOT高端驱动自举电压输入端。与Pin 14脚用一个电容连接,具有改善上、下管驱动特性, 内部具有专利技术。4、典型电源系统图分PFC、谐振半桥部分。load tc esse compliance with energy saving ragjlaiions.5、振荡器振荡频率由定时元件CF选择值决定。Pin3连接一个精准的2V基准电压输出2mA或更大的电流源。CF以上网络,包函三部分:A、最小振荡频率:一个电阻RFmin连接Pin4与地之间,确定电路最小工作频率。B、最大振荡频率:一个电阻RFmax连接Pin4与光耦(C-E极)之间,光耦调整通过的电流,即调整 振荡频率,达到输出电压的调整目的。在光耦完全饱和情况下,RFmax确定最大工作频率。C、软启动:一个RC串联电

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号