【施工方案】第三章-矿井建设施工方案及施工组织(DOC 40页)

上传人:公**** 文档编号:504662648 上传时间:2023-08-04 格式:DOC 页数:40 大小:353.50KB
返回 下载 相关 举报
【施工方案】第三章-矿井建设施工方案及施工组织(DOC 40页)_第1页
第1页 / 共40页
【施工方案】第三章-矿井建设施工方案及施工组织(DOC 40页)_第2页
第2页 / 共40页
【施工方案】第三章-矿井建设施工方案及施工组织(DOC 40页)_第3页
第3页 / 共40页
【施工方案】第三章-矿井建设施工方案及施工组织(DOC 40页)_第4页
第4页 / 共40页
【施工方案】第三章-矿井建设施工方案及施工组织(DOC 40页)_第5页
第5页 / 共40页
点击查看更多>>
资源描述

《【施工方案】第三章-矿井建设施工方案及施工组织(DOC 40页)》由会员分享,可在线阅读,更多相关《【施工方案】第三章-矿井建设施工方案及施工组织(DOC 40页)(40页珍藏版)》请在金锄头文库上搜索。

1、第三章 矿井建设施工方案及施工组织第一节 井筒施工方案及施工组织3。1。1表土施工方案的选择: 1表土层地质特征:根据李村矿井主井、副井井筒检查钻孔地质报告所揭露的地层,自上而下为:第四系黄土覆盖层、第三系、二迭系上统上石盒子组,二迭系下统下石盒子组、二叠系下统山西组、石炭系上统太原组地层。根据含水介质的岩型组合、空隙类型及含水特征,矿区内可划分为三大含水岩系,即:第三、第四系松散岩类空袭含水岩系;石炭、二叠系碎屑岩夹碳酸盐岩裂隙含水岩系;寒武、奥陶系碳酸盐岩裂隙岩溶含水岩系。本次井筒开拓仅穿越前两个含水岩系.由地址柱状图可知:李村矿井的工业场地处第四系冲积层厚度为90m左右,其下部含有砾石层

2、;风化基岩根据邻近矿井情况厚度为55m左右,表土层不稳定;冲积层埋深120。50m,强风化埋深131。50m,中风化埋深137m,弱风化埋深171.30m。第四系及风化基岩均为含水层,第四系含水丰富,风化基岩含水性差异较大。2施工方案比较:2、1普通法施工:适用条件:普通法施工适用于表土层坚实稳定、结构均匀、且含水量较小或渗透性弱。 优点:成本较低;准备工作简单;工序简单,便于操作;施工速度快.缺点:使用局限性大。李村矿的表土段不稳定,涌水量大,不可采用普通施工法。2、2注浆法:适用条件:裂隙含水岩层或岩溶溶洞,裂隙宽度大于0。150。2,含水砂砾层,中粗砂层,细砂、流砂层;含水层距地表较浅、

3、较厚,或含水层虽薄,但分层距离较近,注浆深度一般为500m左右。含水砂层埋深小于50m,层厚10m左右。优点:可在施工准备期进行,有利于缩短建井工期;作业条件好、安全。缺点:注浆深度大,要求钻孔技术较高,需分段止浆,工艺较复杂;孔深,需要大型钻机设备.李村矿的表土段地质特征为粘土,其次为泥岩、砂岩,注浆效果不佳,因此不可以采用注浆法。2、3钻井法:适用条件:以表土层为主的井筒施工;煤系岩层,其层厚约占全井深度1/4左右;岩石层虽较厚,但钻井直径较小,扩孔次数不多。以钻一次、扩一至二次为最佳;地质条件复杂,如表土层中的含水流砂层、膨胀性粘土较厚,岩石层涌水量较大的井筒施工。优点:施工速度快.缺点

4、:成本高,所需设备较多。钻井法施工的全部作业均在地面进行,李村矿主井井筒直径较大,需要增加扩孔次数,影响钻井速度;其次钻井法施工在埋深达120.50m的冲积层可取得较好效果,但遇到泥岩、砂岩层时钻速较低、刀具费用较高,成本加大;最后工业场地狭小,不能安装大型设备.故不采用钻井法施工。2、4沉井法:适用条件:在不含有卵石、漂石,底部有隔水粘土层,总厚度在100m左右的不稳定表土层中.优点:需用设备极为简单,工艺简便,容易操作,准备期短易上马,工期短,成本低,井壁质量好。缺点:适用条件受限制,因井内不灌水,井内外压力不平衡。容易引起涌砂冒泥,地面塌陷,安全性较差.李村主井表土段和风化基岩段厚180

5、m,厚度过大,立井垂直度要求较高,深沉井不宜准确掌握掘进部位,井筒的偏斜和下沉速度不宜控制,可靠性较差,故不选用沉井法。2、5混凝土帷幕法:适用条件:适用于下列地层的立井、斜井或其它地下工程的施工:粗砂、粉砂等各种流砂层;卵石含水松散地层;粘土含水地层;各种互层,特殊复杂地层。目前施工深度宜在100米以内,以下地层不宜采用:岩溶地层,严重漏浆地层,含承压水水头较高的砂砾地层。优点:施工较简单;施工准备工作和施工工艺较简单;设备和机具及其用电量均比较少;因此,准备工作期限比较短,有利于缩短建井工期。适应性强,封底可靠,可以有效地通过含有卵石、砾石、粉砂或地下水大等复杂冲击地层;还可以根据需要使混

6、凝土帷幕嵌入稳定地层内一定深度,开挖井筒时不需要另做封底工作。工艺技术较为成熟质量较为可靠。 钢材、木材耗用量较小。需要的大宗材料-水泥、砂子和石子易就地解决,有利于降低工程成本。改善了井筒开挖作业环境.缺点:施工深度浅,有局限性。李村矿矿井井深较深,不能采用混凝土帷幕法.2、6冻结法:适用条件:松散不稳定的冲积层、裂隙含水岩层、松软泥岩、含水量和水压特大的岩层;地下水含盐量不大,且地下水流速较小时(流速v1710m/s),均可使用冻结法。井筒直径大小和深度基本上不受限制。优点:对地质和水文条件复杂的含水层、淤泥层、破碎带以及基岩含水层等的适应性强,施工安全可靠,为立井最常用冻结方案;整个冻结

7、馆内盐水一次循环,克服温差过大引起短管现象;可利用盐水正反循环达到初期加强上部冻结和后期加强下部冻结;冻结器结构和工业、供液管安装均简单。缺点:施工工艺复杂,设备较多,管材消耗多,成本较高,工期准备时间长。根据地质报告和以上各种施工方案的对比,确定主井井筒表土及风化基岩段均采用冻结法施工,冻结段采用钢筋砼双层井壁,基岩段采用普通法施工。3冻结法施工方案的设计:3、1冻结方案的选择:1)一次冻结全深的方案特点:1、从地面到需要冻结的深度一次冻结。2、全部冻结管都穿过不稳定含水底层,一般插入不透水基岩10米以上。3、来自冷冻站的低温盐水进泵压入干管,经供夜管输入冻结管底部,并沿环形空间上升,经回液

8、管到集液管、干管返回盐水箱内,如此反复循环,与地层经行热交换,以达到冻结的目的。适用条件:1、适用于各类地层.2、不宜采用其他冻结方案的地层。3、冻结设施能满足积极冻结期最大需冷量的要求。2)差异冻结方案特点:1、冻结管采用长短管间隔布置,下部长管间距较上部冻结管的孔间距大一倍,为使上下冻结壁的交圈时间和厚度相适应,可适当加大长管的供液管直径,采用正循环,而短管采用反循环。2、上部利用长短管共同冻结,尽快形成冻结壁,给井筒提前开挖创造条件,下部由于冻结管间距大,冻结壁较薄,减少了井筒下部的冻土挖掘量.适用条件:1、上部为含水丰富的冲积层,含水量较大,需要冻结,但地压,水压不大.2、冲积层以下的

9、基岩厚度占井筒总深度的比例小,且与冲积层有水力联系。3)局部冻结方案特点:1、较一次冻结全深节约冷量,成本低。2、井下打钻工程量小,但施工条件较差,技术要求高。3、打钻及冻结工作 必须等井筒施工到一定深度后进行,延长井筒施工工期.4、在井内安装盐水管路不方便。适用条件:1、上部冲积层含水少和稳定性好,而下部含水性土层多,稳定性差。2。井筒穿过的地层只有中部或下部有少量厚度较小的不稳定含水层.4)分期(段)冻结方案特点:分期冻结是将一个井筒所需冻结深度,分为两段或两段以上进行顺序冻结,当上段冻结一定时间并转入井筒掘砌后,再开始下段冻结。使用条件:1、当冲积层较厚,中部较好的隔水层,可作为分期冻结

10、的止水底垫2、冻结基岩段占冻结总深度的比例较大。根据李村矿地址柱状图、地层结构和水文地质,选用一次冻结全深冻结管不变径的冻结方法。3、2冻结深度的确定:井筒检查孔资料表明,主井冲击层底板埋深为120。50m,强风化埋深131.50m,中风化埋深137m,弱风化埋深171.30m,风化基岩根据邻近矿井情况厚度为55m左右。冲击层底部基岩风化严重,且两者有水力联系,冻结深度要穿过基岩风化带,深入不透水基岩10m以上,这样做的目的是使冻结壁底部形成“冻结底垫”防止底部透水事故的发生。选取15m,主井冻结深度暂定为190m。3、3冻结壁厚度的确定:1)盐水温度降低盐水温度对加快冻土扩展速度和提高冻结壁

11、强度、稳定性有一定作用,但也相应的要降低冷冻设备的制冷效率和加大冷冻站的制冷量。根据国内的经验,设计层位的盐水温度一般可按冲击层厚度及井筒净直径选取。并根据不同深度的冻结壁承压需要选用冻结期的盐水温度,已达到有效的利用冷源,提高经济效益.参考建井手册,冲击层厚度100m120m6.0m,设计层位盐水温度参考-2227。选取积极冻结期盐水温度为27,维护冻结期盐水温度为-24。2)钻孔偏斜率和终孔间距钻孔偏斜率直接影响布置圈的直径和终孔间距.参考建井手册,冲击层埋深100m120。50m200m时钻孔偏斜率取0。2%0。25,终孔间距取2。0m2.3m.主井井筒冻结较深,钻孔偏斜率选取0.2%,

12、并每隔50m进行观测。终孔间距为2.2m。3)冻结壁平均温度根据选取的冻结孔间距L=1。3m盐水温度Ty=27初选冻结壁厚度E=2。4以及预计的井帮温度Tn=1计算冻结壁平均温度。其中根据地压值和井筒掘进直径初选冻结壁厚度E选取2。4m,根据0。13H计算地压值P=0.13H=15。64MP.初步设计冻结壁平均温度为8.4)冻结壁厚度计算参考建井手册,极限抗压强度在冻结壁平均温度为-8和砂土情况下为110MP;安全系数一般取22.5,取2。2;允许抗压强度由50MP;按拉麦的第四强度理公式: 2。73m。其中井筒掘进半径,为井筒净半径与井壁厚度之和.其中净半径3.25m,内壁厚0.55m,外壁

13、厚0.5m。根据计算结果和经验,取井筒冻结壁厚度2.8m。表31 冻结壁计算参数表序号参数名称单位参数值1控制层地板埋深m120.502地压值MP15。643冻结壁平均温度-84冻土极限抗压强度MP1105冻土允许抗压强度MP506安全系数2。27冻结壁厚度m2.84简述施工方案和施工工艺:4、1破土:1)试挖 :主井筒表土段试挖必须同时具备以下条件:1水文观测孔内的水位已有规律的上升并冒水;2测温孔的温度降至设计要求值,证实含水层的冻结壁已交圈;3按不同地区、地层的冻结速度以及冻结壁的平均温度推算,在井筒掘砌过程中,每一岩层的冻结壁厚度和强度均能符合设计要求.2)开挖前的准备工作:包括四通一

14、平;临时工业建筑已交正常使用,并能适应井筒施工的需要;锁口、井口盘、井口棚、固定盘和凿井吊盘、稳绳盘施工安装;提升信号系统安装完毕;压风系统安装完毕;混凝土搅拌运输系统运转正常;冻结壁交圈后1020天后试挖及技术培训.3)正式开挖: 主井筒表土段正式开挖必须同时具备以下条件:1根据水文孔和测温孔资料,确认全部含水层的冻结壁均已交圈;2通过试挖已证实冻结壁已有一定的厚度,按冻土扩展速度推算,不同深度的冻结壁厚度和强度可以适应掘进速度要求;3正式开挖前的准备工作已全部就绪。 4、2提升与排矸:主立井井筒施工选用型井架,采用二套单钩提升系统,提均选用JKZ2.815。5型提升机,配3.0m吊桶。首先

15、挖掘机靠近井壁,与抓岩机同时挖罐窝,然后在吊桶两侧对吊桶集中装土,抓岩机在罐侧装土,挖掘机边松土边装土,两个吊桶交替提升运输。松动爆破时,配以大抓装罐。翻矸台为座钩式自动翻矸,经溜矸槽溜入落地矸仓,然后由自卸汽车排到业主指定的排矸场地。4、3排水:冻结法施工最大特点是防止井筒内部的涌水和径流,实现打干井,所以表土施工不设排水设施,但为了适应下部基岩段的施工,在井筒中应设置排水管和深水泵。4、4临时支护:主井井筒表土段采用短段掘砌单行混合作业,故不需临时支护.4、5段高确定:影响掘进段高的主要因素为:岩层性质,地压与冻结壁强度,冻结管偏斜和掘砌速度.井深50m以内,一般冻土未扩入荒径,井帮稳定性差,易引起片帮坍塌,采用短段掘砌,段高3m;井深50m100m范围内,一般冻土已接近或扩入荒径以内,冻结壁的厚度和强度的储备系数较大,井帮稳定性好,采用段高掘砌3m;井深150m以下,尽管冻土扩入井内较多,但由于冻结孔间距较大以及部分冻结管偏斜而靠近井帮,或偏入井内,使冻结壁有效厚度减薄,强度受到削弱,加上地压大,冻结壁强度的储备系数较小,尤其是粘性土层的流变特性更为显著,井帮易于变形和片落,掘进段高为3m.4、6永久支护(壁座、锁口)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号