第一性原理计算原理和方法

上传人:pu****.1 文档编号:504654584 上传时间:2023-11-17 格式:DOC 页数:44 大小:1.06MB
返回 下载 相关 举报
第一性原理计算原理和方法_第1页
第1页 / 共44页
第一性原理计算原理和方法_第2页
第2页 / 共44页
第一性原理计算原理和方法_第3页
第3页 / 共44页
第一性原理计算原理和方法_第4页
第4页 / 共44页
第一性原理计算原理和方法_第5页
第5页 / 共44页
点击查看更多>>
资源描述

《第一性原理计算原理和方法》由会员分享,可在线阅读,更多相关《第一性原理计算原理和方法(44页珍藏版)》请在金锄头文库上搜索。

1、word第二章 计算方法与其根本原理介绍 化学反响的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似和关于分子波函数的方程形成计算量子化学的数学根底。图2-1分子体系的坐标2.1 SCF-MO 方法的根本原理分子轨道的自洽场计算

2、方法(SCF-MO)是各种计算方法的理论根底和核心局部,因此在介绍本文计算工作所用方法之前,有必要对其关键的局部作一简要阐述。2.1.1 Schrodinger方程与一些根本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要说明用于本文量子化学计算的一些重要的根本近似,给出SCF MO方法的一些根本方程,并对这些方程作简略说明,因为在大量的文献和教材中对这些方程已有系统的推导和阐述1-5。 确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger方程 2.1其中分子波函数依赖于电子和原子核的坐标,Hamilton算符包含了电

3、子p的动能和电子p与q的静电排斥算符, (2.2)以与原子核的动能 (2.3)和电子与核的相互作用与核排斥能 (2.4)式中ZA和MA是原子核A的电荷和质量,rpq=|rp-rq|,rpA=|rp-RA|和RAB=|RA-RB|分别是电子p和q、核A和电子p与核A和B间的距离均以原子单位表示之。上述分子坐标系如图2.1所示。可以用V(R,r)代表(2.2)(2.4)式中所有位能项之和 (2.5)l 原子单位上述的Schrodinger方程和Hamilton算符是以原子单位表示的,这样表示的优点在于简化书写型式和防止不必要的常数重复计算。在原子单位的表示中,长度的原子单位是Bohr半径能量是以H

4、artree为单位,它定义为相距1Bohr的两个电子间的库仑排斥作用能质量如此以电子制单位表示之,即定义me=1 。l Born-Oppenheimer近似可以把分子的Schrodinger方程(2.1)改写为如下形式 (2.6)由于组成分子的原子核质量比电子质量大103倍105倍,因而分子中电子运动的速度比原子核快得多,核运动平均速度比电子小千倍,从而在求解电子运动问题时允许把电子运动独立于核运动,即认为原子核的运动不影响电子状态。这就是求解(2.1)式的第一个近似,被称作Born-Oppenheimer近似或绝热近似。假定分子的波函数可以确定为电子运动和核运动波函数的乘积 (2.7)其中(

5、R)只与核坐标有关,代入方程(2.2)有对于通常的分子,依据Born-Oppenheimer原理有:A和A2都很小,同时MA103105,从而上述方程中的第二项和第三项可以略去,于是易知也即该方程可以别离变量而成为两个方程 (2.8) (2.9)方程(2.8)为在某种固定核位置时电子体系运动方程,而方程(2.8)时核的运动方程。E(R)固定核时体系的电子能量,但在核运动方程中它又是核运动的位能。此时分子总能量用ET代表。 因此,在Born-Oppenheimer近似下,分子体系波函数为两个波函数的乘积(2.7)式。分子中电子运动波函数(R)分别由(2.8)和(2.9)式确定。电子能量E(R)为

6、分子的核坐标的函数,从(2.9)式看出它又是核运动的位能。在空间画出E(R)随R的变化关系称为位能图。l 单电子近似体系的电子与核运动别离后,计算分子的电子波函数归结为求解下面的方程 (2.10)(2.10)式是量子化学的根本方程,目前已有多种求解这个方程的方法。这些方法的区别首先是构成的方式与其相应的近似。 最常用的是Hartree建议的单电子近似6。在多电子体系中,所有电子势相互作用的,其中任意电子运动依赖于其它电子的运动。Hartree建议把所有电子对于每个个别电子运动的影响代换成某中有效场的作用。于是每个电子在核电荷与其余电子有效场产生的势场中运动仅依赖于电子坐标。 从而,电子运动分开

7、了,对于多电子体系中每个电子可以引入单电子波函数,这种单电子波函数是(2.10)式单电子Schrodinger方程的解,其中含有算符1/rpq项,用只依赖于所研究电子坐标的有效场代替。整个多电子体系波函数等于所有电子的单电子波函数轨道乘积。 电子还具有自旋角动量s,其分量sx,sy和sz满足普通角动量算符的对易关系。算符s2和sz完全给定了电子的自旋,电子自旋波函数h(x)满足方程 (2.11)其中x是自旋坐标,通常把对应于自旋1/2的波函数记为a(x),而把自旋ms=-1/2波函数记作b(x)。 在非相对论近似下和不存在外磁场时,电子的自旋和空间坐标无关,因此,因此电子的自旋轨道可取成 (2

8、.12)考虑到自旋变量的多电子波函数由自旋轨道组成,他应当是体系总自旋S2与其Sz的本征函数 (2.13a) (2.13b)构成体系多电子波函数时,必须考虑相对于任一对电子交换的反对称性要求,此所谓Pauli原理7。因此,一般不求出Hartree方法的简单乘积型波函数,而是求出对应于按自旋轨道电子的所有可能置换方式的Slater行列式波函数,此为Hartree-Fock方法。对于置于n=N/2轨道的上的N电子体系,单电子近似下波函数写为 (2.14)该式的Slater行列式是保证反对称性要求的唯一这类函数。 引入单电子近似便确定了波函数的形式,用它可以求解方程(2.10)。显然在一般的情况下,

9、应当包含(2.14)型行列式的线性组合,同时满足(2.13)式的限制。假如(2.12)式中自旋局部是单电子自旋投影算符Sz的本征值,如此(2.13b)式就满足。当分子的n个轨道每个均为自旋反平行电子对占据时闭电子壳层,一个行列式波函数(2.14)就已满足(2.13a)和(2.13b)。对于含有未配对的电子体系,这是做不到的,此时体系波函数是对应于各种轨道填充方式不同组态的Slater行列式l的的线性组合 (2.15)当适当选择行列式前系数al时,条件(2.13a)和波函数的反对称性要求均可以满足。 由于存在着电子运动的相关,不明显处理(2.10)式中1/rpq项的单电子近似,完全忽略了这种相关

10、效应,所以,Hartree-Fock单电子近似使波函数的计算产生了误差。l 变分原理上述单电子近似只是给出了所求解体系多电子波函数的一种形式,变分法提供了求解方程(2.10)的一种方法。Schrodinger方程(2.10)的解对应于稳定态能量。因此假如波函数是(2.10).的解,那么对于任意微小变化d,取能量平均值 (2.16)的变分应等于零,即 (2.17)(2.16)式中积分是对的所有变量进展的,并且已假定是归一化的,即 (2.18)由于我们寻找对应于体系基态的波函数,总能 量应当是极小值。因此,对单电子轨道施行变分就给出这种型式波函数,能量是极小值并满足(2.17)式。从而求得的波函数

11、就是多电子体系基态Schrodinger方程所欲求的解。显然,为了施行变分,波函数的型式应当充分好。两种途径可以保证这一点:取展开式(2.15)是从充分多项,且固定轨道只对系数al变分;局限于尽可能少的行列式l,假如有可能做到就取一个,但此时把每个表成可能的简单形式。鉴于这种选择,区分出两类广泛应用的量子化学方法,价键(VB)法和分子轨道法(MO). 在价键法中,用孤立原子的原子轨道(AO)作为单电子波函数去构成Slater行列式l。原子轨道的不同选择对应于不同的行列式l。对于(2.15)施行的变分,可得到确定系数al的方程。为了充分靠近体系的能量,必须在(2.15)式中选用足够的多项,即用多

12、行列式波函数进展运算。用原子轨道线性组合分子轨道(LCAO MO)法提供了另外一种选择相应于体系能量极小的多电子波函数方法。此时,对应于分子中单电子态的分子轨道i写成原子轨道基函数AO的线性组合 (2.19)实际上,这种展开有完全合理的根底。因为靠近某个原子的电子所受的作用根本上是由该原子产生的场引起的,所以该区域中电子波函数应当近于原子轨道。展开该式对求解变分问题的优点是明显的。 如果(2.15)式中选用极大数目的项,那么VB法和MO法就都给出同样的能量E和波函数,当然表达式不完全一样。这种唯一性的原因很简单,因为使用LCAO MO的的每个行列式均可以展开为AO组成的一些行列式。在一般情况下

13、,每个MO组成的行列式应展开成AO组成的所有行列式。因为波函数应通过AO组成的行列式完全集合表达,从而,当使用完全集合时,MO法与VB法所描述的就等价。当然,不用完全与表达时,两种方法的等价性就破坏了。在极端性况下,某种方法中可以取一个行列式,此时可以直接看到MO法的优越性。 对于MO法,允许采用单行列式表达至少对于闭壳层体系,进而,通常由一些正交分子轨道组成行列式 (2.20)其中ij是Kronecker符号。从而是计算大为简化,并能比VB法更简单地确定(2.19)式的方程系数。同时,MO法的根本方程能很好的适应现代电子计算机的能力。由于这个原因,现代的MO方法已经成为最常用的计算多电子分子

14、的电子结构的根本方法。2.1.2 闭壳层体系的Hartree-Fock-Roothaan方程 在分子轨道X围内,对闭壳层体系,在单电子近似下,用两个自旋反平行电子填充每个分子轨道,可以构成一个Slater行列式(2.14)型波函数,选择轨道(2.12)的自旋局部满足(2.11)式,如此保证了(1.13b)条件。 根据变分原理,假如轨道使得分子能量(2.16)取极小值,就求出了所研究多电子体系方程(2.10)的解。将波函数(2.14)代入(2.16)式,并进展一些推导见引文14,可得闭壳层分子的电子能量表达式 (2.21)此处Hii是对应于分子轨道i的核实Hamilton量Hcore(1)的单电子矩阵元 (2.22)而

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号