开关电源电路设计实例分析设计流程

上传人:M****1 文档编号:503212864 上传时间:2024-01-12 格式:DOC 页数:14 大小:593KB
返回 下载 相关 举报
开关电源电路设计实例分析设计流程_第1页
第1页 / 共14页
开关电源电路设计实例分析设计流程_第2页
第2页 / 共14页
开关电源电路设计实例分析设计流程_第3页
第3页 / 共14页
开关电源电路设计实例分析设计流程_第4页
第4页 / 共14页
开关电源电路设计实例分析设计流程_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《开关电源电路设计实例分析设计流程》由会员分享,可在线阅读,更多相关《开关电源电路设计实例分析设计流程(14页珍藏版)》请在金锄头文库上搜索。

1、开关电源电路设计实例分析(设计流程)1. 目的希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教.2 设计步骤:2.1 绘线路图、PCB Layout.2.2 变压器计算.2.3 零件选用.2.4 设计验证.3 设计流程介绍(以DA-14B33 为例):3.1 线路图、PCB Layout 请参考资识库中说明.3.2 变压器计算:变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就DA-14B33 变压器做介绍.3.2.1 决定变压器的材质及尺寸:依据变压器计算公式B(max) = 铁心饱合的磁通密度(Gauss)Lp = 一次侧电感值(uH)I

2、p = 一次侧峰值电流(A)Np = 一次侧(主线圈)圈数Ae = 铁心截面积(cm2)B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40 为例,100时的B(max)为3900 Gauss,设计时应考虑零件误差,所以一般取30003500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power。3.2.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较

3、大瓦数的Power,但相对价格亦较高。3.2.3 决定变压器线径及线数:当变压器决定后,变压器的Bobbin即可决定,依据Bobbin的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。设计流程简介3.2.4 决定Duty cycle (工作周期): 由以下公式可决定Duty cycle ,Duty cycle 的设计一般以50%为基准,Duty cycle 若超过50%易导致振荡的发生。 NS = 二次侧圈数 NP = 一次侧圈数 Vo = 输出电压 VD= 二极管顺向电压 Vin(m

4、in) = 滤波电容上的谷点电压 D = 工作周期(Duty cycle)3.2.5 决定Ip 值: Ip = 一次侧峰值电流 Iav = 一次侧平均电流 Pout = 输出瓦数 h =效率 f = PWM 振荡频率3.2.6 决定辅助电源的圈数: 依据变压器的圈比关系,可决定辅助电源的圈数及电压。3.2.7 决定MOSFET 及二次侧二极管的Stress(应力):依据变压器的圈比关系,可以初步计算出变压器的应力(Stress)是否符合选用零件的规格,计算时以输入电压264V(电容器上为380V)为基准。3.2.8 其它: 若输出电压为5V 以下,且必须使用TL431 而非TL432 时,须考

5、虑多一组绕组提供Photo coupler 及TL431 使用。3.2.9 将所得资料代入公式中,如此可得出 B(max),若B(max)值太高或太低则参数必须重新调整。3.2.10 DA-14B33 变压器计算: 输出瓦数13.2W(3.3V/4A),Core = EI-28,可绕面积(槽宽)=10mm,Margin Tape = 2.8mm(每边),剩余可绕面积=4.4mm. 假设fT = 45 KHz ,Vin(min)=90V, =0.7,P.F.=0.5(cos ),Lp=1600 Uh 计算式:变压器材质及尺寸: 由以上假设可知材质为PC-40,尺寸=EI-28,Ae=0.86cm

6、2,可绕面积(槽宽)=10mm,因Margin Tape使用2.8mm,所以剩余可绕面积为4.4mm.2 假设滤波电容使用47uF/400V,Vin(min)暂定90V。l 决定变压器的线径及线数:2 假设NP使用0.32的线电流密度可绕圈数假设Secondary使用0.35的线假设使用4P,则决定Duty cycle:假设Np=44T,Ns=2T,VD=0.5(使用schottky Diode)决定Ip 值:决定辅助电源的圈数:假设辅助电源=12V假设使用0.23的线若NA1=6Tx2P,则辅助电源=11.4V决定MOSFET 及二次侧二极管的Stress(应力):Ns 其它:因为输出为3.

7、3V,而TL431 的Vref值为2.5V,若再加上photo coupler 上的压降约1.2V,将使得输出电压无法推动Photo coupler 及TL431,所以必须另外增加一组线圈提供回授路径所需的电压。假设NA2 = 4T 使用0.35线,则所以可将NA2定为4Tx2P变压器的接线图:3.3 零件选用:零件位置(标注)请参考线路图: (DA-14B33 Schematic)3.3.1 FS1保险丝:由变压器计算得到Iin 值,以此Iin值(0.42A)可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。3.3.2 TR1(热敏电阻):电

8、源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power 产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec 之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5),若C1 电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power 上)。3.3.3 VDR1(突波吸收器):当雷极发生时,可能会损坏零件,进而影响Power 的正常动作,所以必须在靠AC 输入端 (Fuse 之后),加上突波吸收器来保护0.32x1

9、Px22T0.32x1Px22T0.35x2Px4T0.35x4Px2T0.23x2Px6T设计流程简介Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。3.3.4 CY1,CY2(Y-Cap):Y-Cap 一般可分为Y1 及Y2 电容,若AC Input 有FG(3 Pin)一般使用Y2- Cap , AC Input 若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2 的差异,除了价格外(Y1 较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2 的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路因为有FG 所以使用Y2-Cap,Y-Ca

10、p会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin 公司标准为750uAmax)。3.3.5 CX1(X-Cap)、RX1:X-Cap 为防制EMI零件,EMI 可分为Conduction及Radiation 两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、 CISPR22(EN55022) Class B 两种 , FCC测试频率在450K30MHz,CISPR22 测试频率在150K30MHz, Conduction可在厂内以频谱分析仪验证,Radiation 则必须到

11、实验室验证,X-Cap 一般对低频段(150K 数M 之间)的EMI 防制有效,一般而言X-Cap 愈大,EMI 防制效果愈好(但价格愈高),若X-Cap 在0.22uf 以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2M 1/4W)。3.3.6 LF1(Common Choke):EMI 防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI特性及温升,以同样尺寸的Common Choke 而言,线圈数愈多(相对的线径愈细),EMI 防制效果愈好,但温升可能较高。3.3.7 BD1(整流二极管):将AC 电源以全波整流的方式转换为DC,由变压器

12、所计算出的Iin值,可知只要使用1A/600V 的整流二极管,因为是全波整流所以耐压只要600V 即可。3.3.8 C1(滤波电容):由C1 的大小(电容值)可决定变压器计算中的Vin(min)值,电容量愈大,Vin(min)愈高但价格亦愈高,此部分可在电路中实际验证Vin(min)是否正确,若AC Input 范围在90V132V (Vc1 电压最高约190V),可使用耐压200V 的电容;若AC Input 范围在90V264V(或180V264V),因Vc1 电压最高约380V,所以必须使用耐压400V 的电容。3.3.9 D2(辅助电源二极管):整流二极管,一般常用FR105(1A/6

13、00V)或BYT42M(1A/1000V),两者主要差异:1.耐压不同(在此处使用差异无所谓)2.VF不同(FR105=1.2V,BYT42M=1.4V)3.3.10 R10(辅助电源电阻):主要用于调整PWM IC 的VCC 电压,以目前使用的3843 而言,设计时VCC 必须大于8.4V(Min. Load 时),但为考虑输出短路的情况,VCC 电压不可设计的太高,以免当输出短路时不保护(或输入瓦数过大)。3.3.11 C7(滤波电容):辅助电源的滤波电容,提供PWM IC 较稳定的直流电压,一般使用100uf/25V 电容。3.3.12 Z1(Zener 二极管):当回授失效时的保护电路

14、,回授失效时输出电压冲高,辅助电源电压相对提高,此时若没有保护电路,可能会造成零件损坏,若在3843VCC 与3843 Pin3 脚之间加一个Zener Diode,当回授失效时ZenerDiode 会崩溃,使得Pin3 脚提前到达1V,以此可限制输出电压,达到保护零件的目的.Z1 值的大小取决于辅助电源的高低,Z1 的决定亦须考虑是否超过Q1 的VGS耐压值,原则上使用公司的现有料(一般使用1/2W 即可).3.3.13 R2(启动电阻):提供3843 第一次启动的路径,第一次启动时透过R2 对C7 充电,以提供3843 VCC 所需的电压,R2 阻值较大时,turn on的时间较长,但短路

15、时Pin 瓦数较小,R2 阻值较小时,turn on的时间较短,短路时Pin 瓦数较大,一般使用220K/2W M.O。3.3.14 R4 (Line Compensation):高、低压补偿用,使3843 Pin3 脚在90V/47Hz 及264V/63Hz 接近一致(一般使用750K1.5M 1/4W 之间)。3.3.15 R3,C6,D1 (Snubber):此三个零件组成Snubber,调整Snubber 的目的:1.当Q1 off 瞬间会有Spike 产生,调整Snubber 可以确保Spike 不会超过Q1 的耐压值,2. 调整Snubber 可改善EMI. 一般而言, D1 使用1N4007(1A/1000V)EMI 特性会较好.R3 使用2W M.O.电阻,C6 的耐压值

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号