太阳能小屋整体设计及装饰

上传人:枫** 文档编号:502870891 上传时间:2023-05-07 格式:DOC 页数:29 大小:949.84KB
返回 下载 相关 举报
太阳能小屋整体设计及装饰_第1页
第1页 / 共29页
太阳能小屋整体设计及装饰_第2页
第2页 / 共29页
太阳能小屋整体设计及装饰_第3页
第3页 / 共29页
太阳能小屋整体设计及装饰_第4页
第4页 / 共29页
太阳能小屋整体设计及装饰_第5页
第5页 / 共29页
点击查看更多>>
资源描述

《太阳能小屋整体设计及装饰》由会员分享,可在线阅读,更多相关《太阳能小屋整体设计及装饰(29页珍藏版)》请在金锄头文库上搜索。

1、目 录摘要3第一章 绪论 4第二章 太阳能光伏电源系统的原理及组成52.1 太阳能电池方阵 52,2 充电放电控制器 62.3 蓄电池组 82.4 直流交流逆变器 10第三章 太阳能光伏电源系统的设计原理及其影响因素 163.1 太阳能光伏电源系统的设计原理173.2 太阳能光伏电源系统的影响因素19第四章 太阳能小屋的相关芯片204.1 热释电探头204.2 跑马灯224.3 语音芯片22第五章 太阳能小屋整体设计及装饰 255.1 设计理念255.2 整体布局及装饰25第六章 总结27参考文献28致 谢28摘要光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术

2、的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上蓄电池组,充放电控制器,逆变器等部件就形成了光伏发电装置。本文首先介绍了太阳能光伏电源系统的原理及其组成,初步了解了光生伏特效应原理及其模块组成,然后进一步研究各功能模块的工作原理及其在系统中的作用,最后根据理论研究成果,利用硬件和软件相结合的方法设计出太阳能光伏电源系统,以及研究系统的影响因素。关键词:光生伏特效应;太阳能电池组件;蓄电池组;充放电控制器;逆变器第一章 绪论人类社会进入21世纪,正面临着化石燃料短缺和生态环境污染的严重局面。廉价的石油时代已经结束,逐步改变能源消费结,大力发展可再生能源

3、,走可持续发展的道路,已逐渐成为人们的共识。太阳能光伏发电具有独特的优点,近年来正在飞速发展。太阳能电池的产量年增长率在40%以上,已成为发展最迅速的高新技术产业之一,其应用规模和领域也在不断扩大,从原来只在偏远无电地区和特殊用电场合使用,发展到城市并网系统和大型光伏电站。 尽管目前太阳能光伏发电在能源结构中所占比例还微不足道,但是随着社会的发展和技术的进步,其份额将会逐步增加,可以预期,到21世纪末,太阳能发电将成为世界能源供应的主体,一个光辉的太阳能时代将到来。我国的光伏产业发展极不平衡,2007年太阳能电池的产量已经超过日本和欧洲而居世界第一,然而光伏应用市场的发展却非常缓慢,光伏累计安

4、装量大约只占世界的1%,应用技术水平与国外相比还有相当大的差距。光伏产品与一般机电产品不同,必须很据负载的要求和当地的气象、地理条件来决定系统的配置,由于目前光伏发电成本较高,所以应进行优化设计,以达到可靠性和经济性的最佳结合,最大限度的发挥光伏电源的作用。为了提高太阳能的转换效率,获取更多的有效能源,满足人类的能源供应,世界各国在研究太阳能光伏系统中都投入了大量的人力与物力。我国对太阳能光伏电源系统的研究还处于世界低等水平,产品的性能还有待提高,为迎接未来能源短缺带来的严峻挑战,我们应该加大对太阳能光伏系统的研究,以满足人类未来对能源的需求。本文从理论出发,阐述了太阳能光伏电源的原理及其组成

5、结构;结合科研实际,应用硬件和软件结合的方法,设计了简易的太阳能光伏电源模拟系统。根据这个简易系统研究分析了太阳能光伏电源的影响因素,合理优化了系统的配置,以提高系统的性能,最终提高了太阳能的转换效率。第二章 太阳能光伏电源系统的原理及组成太阳能光伏电源系统是利用以光生伏打效应原理制成的太阳能电池将太阳辐射能直接转换成电能的发电系统。它由太阳能电池方阵、充电放电控制器、蓄电池组、直流/交流逆变器等部分组成,其系统组成如图2-1所示。 图2-1 太阳能光伏电源系统示意图2.1 太阳能电池方阵太阳能电池单体是光电转换的最小单元,尺寸一般为42到1002不等。太阳能电池单体的工作电压约为0.5V,工

6、作电流约为2025mA/2,一般不能单独作为电源使用。将太阳能电池单体进行串并联封装后,就成为太阳能电池组件,其功率一般为几瓦至几十瓦,是可以单独作为电源使用的最小单元。太阳能电池组件再经过串并组合安装在支架上,就构成了太阳能电池方阵,可以满足负载所要求的输出功率(见图2-2)。 图2-2 太阳能电池单体、组件和方阵2.1.1 太阳能电池的工作原理光是由光子组成,而光子是包含有一定能量的微粒,能量的大小由光的波长决定,光被晶体硅吸收后,在PN结中产生一对对正负电荷,由于在PN结区域的正负电荷被分离,因而可以产生一个外电流场,电流从晶体硅片电池的低端经过负载流到电池的顶端。这就是“光生伏特效应”

7、。将一个负载连接在太阳能电池的上下两表面间时,将有电流流过该负载,于是太阳能电池就产生了电流;太阳能电池吸收的光子越多,产生的电流也就越大。光子的能量由波长决定,低于基能能量的光子不能产生自由电子,一个高于基能能量的光子将仅产生一个自由电子,多余的能量将使电池发热,伴随电能损失的影响将使太阳能电池的效率下降。2.2 充电放电控制器 充放电控制器是能自动防止蓄电池组过充电和过放电并具有简单测量功能的电子设备。由于蓄电池组的循环充放电次数及充放电深度是决定蓄电池使用寿命的重要因素,因此能控制蓄电池组过充电或过放电的充电放电控制器是必不可少的设备。2.2.1 充电放电控制器的功能控制器的功能: (1

8、)高压(HVD)断开和恢复功能:控制器应具有输入高压断开和恢复连接的功能。(2)欠压(LVG)告警和恢复功能:当蓄电池电压降到欠压告警点时,控制器应能自动发出声光告警信号。(3)低压(LVD)断开和恢复功能:这种功能可防止蓄电池过放电。通过一种继电器或电子开关连结负载,可在某给定低压点自动切断负载。当电压升到安全运行范围时,负载将自动重新接入或要求手动重新接入。有时,采用低压报警代替自动切断。(4)保护功能: 防止任何负载短路的电路保护。 防止充电控制器内部短路的电路保护。 防止夜间蓄电池通过太阳电池组件反向放电保护。 防止负载、太阳电池组件或蓄电池极性反接的电路保护。 在多雷区防止由于雷击引

9、起的击穿保护。(5)温度补偿功能:当蓄电池温度低于时,蓄电池应要求较高的充电电压,以便完成充电过程。相反,高于该温度蓄电池要求充电电压较低。通常铅酸蓄电池的温度补赏系数为 5mv/C/CELL 。2.2.2 充放电控制器的工作原理(1)单路并联型充放电控制器(如图2-3) 图2-3 单路并联型充放电控制器并联型充放电控制器充电回路中的开关器件T1是并联在太阳电池方阵的输出端,当蓄电池电压大于“充满切离电压”时,开关器件T1导通,同时二极管D1截止,则太阳电池方阵的输出电流直接通过T1短路泄放,不再对蓄电池进行充电,从而保证蓄电池不会出现过充电,起到“过充电保护”作用。D1为防“反充电二极管”,

10、只有当太阳电池方阵输出电压大于蓄电池电压时,D1才能导通,反之D1截止,从而保证夜晚或阴雨天气时不会出现蓄电池向太阳电池方阵反向充电,起到“放反向充电保护”作用。开关器件T2为蓄电池放电开关,当负载电流大于额定电流出现过载或负载短路时,T2关断,起到“输出过载保护”和“输出短路保护”作用。同时,当蓄电池电压小于“过放电压”时,T2也关断,进行“过放电保护”。D2为“防反接二极管”,当蓄电池极性接反时,D2导通使蓄电池通过D2短路放电,产生很大电流快速将保险丝BX烧断,起到“防蓄电池反接保护”作用。检测控制电路随时对蓄电池电压进行检测,当电压大于“充满切离电压”时使T1导通进行“过充电保护”;

11、当电压小于“过放电压”时使T2关断进行“过放电保护”。(2)串联型充放电控制器:串联型充放电控制器和并联型充放电控制器电路结构相似,唯一区别在于开关器件T1的接法不同,并联型T1并联在太阳电池方阵输出端,而串联型T1是串联在充电回路中。当蓄电池电压大于“充满切离电压”时,T1关断,使太阳电池不再对蓄电池进行充电,起到“过充电保护”作用。其它元件的作用和串联型充放电控制器相同,不再赘述。2.3 蓄电池组蓄电池组是光伏电站的贮能装置,由它将太阳能电池方阵从太阳辐射能转换来的直流电转换为化学能贮存起来,以供应用。2.3.1 太阳能光伏电源系统对蓄电池组的基本要求太阳能光伏电源系统对所用蓄电池组的基本

12、要求是:(1) 自放电率低;(2) 使用寿命长;(3) 深放电能力强;(4) 充电效率高;(5) 少维护或免维护;(6) 工作温度范围宽;(7) 价格低廉。光伏电站中与太阳能电池方阵配用的蓄电池组通常是在半浮充电状态下长期工作,它的电能量比用电负荷所需要的电能量要大,因此,多数时间是处于浅放电状态。当冬季和连阴天由于太阳辐射能减少,而出现太阳能电池方阵充电不足的情况时,可启动光伏电站备用电源柴油发电机组给蓄电池组补充充电,以保持蓄电池组始终处于浅放电状态。固定式铅酸蓄电池性能优良、质量稳定、容量较大、价格较低,是我国光伏电站目前选用的主要贮能装置。2.3.2 铅酸蓄电池组的工作原理蓄电池是通过

13、充电将电能转换为化学能贮存起来,使用时再将化学能转换为电能释放出来的化学电源装置。它是用两个分离的电极浸在电解质中而成。由还原物质构成的电极为负极。由氧化态物质构成的电极为正极。当外电路接近两极时,氧化还原反应就在电极上进行,电极上的活性物质就分别被氧化还原了,从而释放出电能,这一过程称为放电过程。放电之后,若有反方向电流流入电池时,就可以使两极活性物质回复到原来的化学状态。这种可重复使用的电池,称为二次电池或蓄电池。如果电池反应的可逆变性差,那么放电之后就不能再用充电方法使其恢复初始状态,这种电池称为原电池。电池中的电解质,通常是电离度大的物质,一般是酸和碱的水溶液,但也有用氨盐、熔融盐或离

14、子导电性好的固体物质作为有效的电池电解液的。以酸性溶液(常用硫酸溶液)作为电解质的蓄电池,称为酸性蓄电池。铅酸蓄电池视使用场地,又可分为固定式和移动式两大类。铅酸蓄电池单体的标称电压为2V。实际上,电池的端电压随充电和放电的过程而变化。铅酸蓄电池在充电终止后,端电压很快下降至2.3 伏左右。放电终止电压为1.71.8 伏。若再继续放电,电压急剧下降,将影响电池的寿命。铅酸蓄电池的使用温度范围为4040。铅酸蓄电池的安时效率为85%90%,瓦时效率为70%,它们随放电率和温度而改变。2.4 直流-交流逆变器众所周知,整流器的功能是将50HZ的交流电整流成为直流电。而逆变器与整流器恰好相反,它的功能是将直流电转换为交流电。这种对应于2.4.1 太阳能光伏电源系统对逆变器的要求采用交流电力输出的光伏发电系统,由光伏阵列、充放电控制器、蓄电池和逆变器四部分组成,而逆变器是其中关键部件。光伏发电系统对逆变器的技术要求如下:(1)要求

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号