基于ZnO的复合纳米材料的电化学传感器研究本科毕业论文

上传人:桔**** 文档编号:501741120 上传时间:2022-11-24 格式:DOC 页数:31 大小:2.84MB
返回 下载 相关 举报
基于ZnO的复合纳米材料的电化学传感器研究本科毕业论文_第1页
第1页 / 共31页
基于ZnO的复合纳米材料的电化学传感器研究本科毕业论文_第2页
第2页 / 共31页
基于ZnO的复合纳米材料的电化学传感器研究本科毕业论文_第3页
第3页 / 共31页
基于ZnO的复合纳米材料的电化学传感器研究本科毕业论文_第4页
第4页 / 共31页
基于ZnO的复合纳米材料的电化学传感器研究本科毕业论文_第5页
第5页 / 共31页
点击查看更多>>
资源描述

《基于ZnO的复合纳米材料的电化学传感器研究本科毕业论文》由会员分享,可在线阅读,更多相关《基于ZnO的复合纳米材料的电化学传感器研究本科毕业论文(31页珍藏版)》请在金锄头文库上搜索。

1、 SHANGHAI UNIVERSITY 毕业设计(论文) UNDERGRADUATE PROJECT (THESIS) 题目:基于ZnO的复合纳米材料的电化学传感器研究 基于ZnO的复合纳米材料的电化学传感器研究摘 要本文主要介绍了利用较为简单、快速的微波辅助多元醇法来制备多形貌Ag纳米采用微波法制备Ag/ZnO复合材料。将制备而成的纳米ZnO和纳米ZnO-Ag修饰到碳糊电极上,研究该纳米复合材料修饰碳糊电极对酪氨酸氧化的电化学行为,并与裸电极进行比较。这是首次利用以纳米ZnO为基体合成纳米复合材料来构建非酶的酪氨酸传感器。通过扫描电镜和X-射线衍射对Ag纳米线和纳米ZnO-Ag颗粒的形态与

2、结构进行表征。修饰后的传感器通过循环伏安法和时间-电流曲线法,对酪氨酸进行检测。传感器对酪氨酸的氧化表现出了灵敏度高(1746.50 AmM-1cm-2),检出限低(0.022 M)和线性范围宽(线性范围从0.05 M到1.00 mM)等特点。通过优化实验条件后,在最佳条件下制作过氧化氢工作曲线。此外,该传感器还可用于实际样品的检测,证明了该方法的可行性。关键词:纳米复合材料 酪氨酸传感器 纳米氧化锌 纳米氧化锌包银 修饰电极 ABSTRACT This paper describes the use of relatively simple and fast microwave-assist

3、ed polyol method to prepare multiple morphologies were prepared by microwave Ag nano-Ag / ZnO Composite Materials. Study the Nano composites prepared from nano-ZnO and nano-ZnO-Ag-modified carbon paste electrode modified carbon paste electrode of tyrosine oxidation of the electrochemical behavior of

4、 bare electrode compared. This is the first use of nano-ZnO matrix synthesis of nano-composite materials to build a non-enzymatic tyrosine sensor. The form and structure of the nano-ZnO and nano-ZnO-Ag particles were characterized by scanning electron microscopy and X-ray diffraction. The modified s

5、ensor by cyclic voltammetry and amperometric tyrosine detection. Sensor tyrosine oxidation showed a high sensitivity (1746.50 AmM-1cm-2), low detection limit (0.022 mM) and wide linear range (linear range from 0.05 micron to 1.00 mM), and so on. Through optimization of the experimental conditions, t

6、he hydrogen peroxide produced under optimum conditions the working curve. In addition, the sensor can also be used for the detection of the actual sample to prove the feasibility of the proposed method。Keywords: Nano composites Tyrosine sensor Nano-zinc oxide Nanometer zinc oxide silver-wrapped Modi

7、fied electrode目 录绪 论11综 述21.1 纳米复合材料21.1.1 纳米复合材料的发展与现状21.1.2 纳米复合材料的制备方法41.1.3 纳米复合材料的特性51.1.4 纳米复合材料的应用.61.2 国内外对酪氨酸测定方法的研究81.2.1 化学法81.2.2 分光光度法91.2.3 高效色谱法91.2.4 毛细管电泳法91.2.5 电化学法102实验部分112.1 实验试剂与仪器112.1.1 实验试剂:112.1.2 实验仪器:112.2 实验方法112.2.1 循环伏安法112.2.2 电流-时间曲线122.3 纳米Ag及纳米ZnO包Ag的制备及表征122.3.1

8、Ag纳米线的制备122.3.2 Ag纳米线的表征132.3.3 纳米ZnO-Ag的制备152.3.4 纳米ZnO-Ag的表征152.4 纳米Ag及纳米ZnO-Ag修饰电极的制备172.5 酪氨酸氧化的反应机理182.6 优化实验条件192.6.1 优化电位192.6.2 优化氢氧化钠浓度202.6.3 优化修饰剂浓度212.7 制作工作曲线222.8 电极的重复性、稳定性和抗干扰性测定232.9 实际样品分析243.结论与展望.24参考文献25致谢27绪 论纳米材料是指在三维空间之中,至少有一维处于纳米尺度的范围之内(0.1100nm)或由它们作为基本单元所构成的材料。由于具有其独特的结构特征

9、,例如纳米晶粒,高浓度界面,因此而拥有的小尺寸效应,量子尺寸效应,量子隧道效应,表面界面效应,使得纳米材料表现出的一系列与常规材料有着本质差异的理化及力学性能,因而得到了各个国家政府和科学研究人员们的广泛关注,使得纳米材料的研究成为目前材料科学研究的热点,并取得了一定的成果1-3。 80年代初Roy等提出的纳米复合材料,为复合材料研究应用开辟了崭新的领域.纳米复合材料指内含弥散相尺寸在1-100nm之间、具有某些特殊物理化学性能的纳米固体.由于纳米微粒独特的高浓度晶界特征,其结构和特性上奇异的表面效应、体积效应、量子尺寸效应和宏观隧道效应等线度效应,使其力学、磁、光、电、声、热和化学活性等特性

10、呈现出与传统多晶体和非晶体材料不同的奇迹,导致材料性能发生非线性突变,赋予纳米复合材料有许多明显不同于单一原材料的独特性能.纳米复合材料兼有纳米材料和复合材料的许多优点,其在化工、机械、生物工程、电子、航天、陶瓷等方面的应用研究,成为目前材料界、化学界、物理界研究领域的热点4。基于纳米复合材料的独特的结构,优越的性质,在社会的各个领域都有着广泛的应用前景,并且目前诸多方面已经取得了突破性的成就。本文主要的研究方向是其在生物传感器领域的应用。在电化学生物传感器的研制中,因纳米性材料拥有很多优点,比如它具有优越的导电能力,其良好的催化特性及其生物的相容性比较好,所以研究其在电化学传感器中的应用,对

11、于提出新理论和新方法,构造新型、简单的电分析生命传感器具有非常重要的实际意义5。同时构建纳米一生物传感界面,将纳米功能材料与生物功能分子的特殊性质及性能相结合,发挥材料间的协同效应,有助于加快生物传感器的发展。1综 述1.1 纳米复合材料1.1.1 纳米复合材料的发展与现状纳米复合材料所涉及的范围很广,种类也很多,现按照材料间的复合方式的不同,我们把纳米复合材料大致分为四类:1是0-0复合,即不同的成分,不同的相,或者不同种类的纳米粒子复合而成的纳米固体,这种复合体的纳米粒子的指粒度在1-100nm之间的粒子(纳米粒子又称超细微粒)。属于胶体粒子大小的范畴,它们处于原子簇和宏观物体之间的过渡区

12、,处于微观体系和宏观体系之间,是由数目不多的原子或分子组成的集团,因此他们既非典型的微观系统亦非典型的宏观系统。纳米粒子区别于宏观物体的结构特点是,它表面积占很大比重,而表面原子既无长程序又无短程序的非晶层,可以认为纳米粒子表面原子的状态更接近气态,而粒子内部的原子可能呈有序的排列。所以这种复合材料中的纳米粒子可以是金属与金属,陶瓷与金属,高分子与金属,陶瓷与陶瓷,陶瓷与高分子,高分子与高分子等等构成纳米复合体;2是0-3复合,即把纳米粒子分散到常规的三维固体中,例如把金属纳米粒子弥散到另一种金属或合金中,或者放入常规的陶瓷材料或者聚合物之中,纳米陶瓷粒子(氧化物,氮化物)放入常规的金属,聚合

13、物,以及陶瓷之中;3是0-2复合,即把纳米粒子分散到二维的薄膜材料之中,这种0-2复合材料又可分为均匀弥散和非均匀弥散两大类,均匀弥散指纳米粒子在薄膜中均匀分布,人们可根据需要控制纳米粒子的粒径以及粒间距,非均匀弥散分布指纳米粒子随机地混乱地分散在薄膜基体中;4是纳米层状复合,即由不同材质交替形成的组分或者结构交替变化的多层膜,各层膜的厚度均为纳米级,如Ni/Cu多层膜,纳米多层膜等,其中第三种和第四种纳米复合材料可统称为纳米复合薄膜材料。0-0复合体系的研究现状,纳米尺度复合,为研制出有着更好的性能的新材料和改善现有的材料的性能提供了新的途径。将不同成分的纳米颗粒进行均匀或者不均匀的掺合,分

14、散,可以大大改善原有材料的性质,使新材料同时拥有两者或者更多的优点,并且同时能够克服原有的不足。德国斯图加特金属研究所等5个研究所单位联合攻关,成功制备了纳米复合材料,这种材料具有高强,高韧,优良的热和化学稳定性1;在中加入稳定剂(粒径小于300nm),观察到了超塑性,甚至可达800%6。对于0-3复合体系,因为引入的纳米粒子本身具有量子尺寸效应,表面界面效应,量子隧道效应等特殊的效应而呈现出的声、光、热、电、力等各方面的特异性,而其特殊的结构特征,也会对原有的材料的性能,有大大的改善。如基体中含有纳米级的晶粒的陶瓷基复合材料,其强度可高达1500MPa,最高使用温度也可从原来的800提高到1

15、200;将纳米粒子填充PTFE复合材料具有力学性能高、耐磨性能高、摩擦系数低等特性。0-2复合体系纳米薄膜是指纳米粒子镶嵌在另一种基体材料中的纳米复合膜。由于其对于材料表面的改性与防护,在光学,电学,催化学等各个方面都有着显著的潜力和广泛的应用,已经得到了全球各国的研究人员的亲睐和大量的研究。金属纳米粒子镶嵌在高聚物的基体中,采用辉光放电等离子体溅射Au,Co,Ni等靶,可获得不同含量纳米金属粒子与碳的复合膜.Barna等采用共沉积法制备了Al-SiOx, Au-C60,Cu-C60复合膜,金属纳米Al, Au, Cu分别弥散在SiOx和C6 0的基体上,并系统研究了纳米复合薄膜材料的形成机理7.K. Symiyama等在聚酰亚胺的基板上通过共沉积法直接将Fe粒子束直接沉积在Cu和Ag的基体上8,9.对

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 资格认证/考试 > 自考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号