多电平逆变器的工作原理、控制方法以及仿真

上传人:人*** 文档编号:501736858 上传时间:2022-07-16 格式:DOC 页数:63 大小:13.07MB
返回 下载 相关 举报
多电平逆变器的工作原理、控制方法以及仿真_第1页
第1页 / 共63页
多电平逆变器的工作原理、控制方法以及仿真_第2页
第2页 / 共63页
多电平逆变器的工作原理、控制方法以及仿真_第3页
第3页 / 共63页
多电平逆变器的工作原理、控制方法以及仿真_第4页
第4页 / 共63页
多电平逆变器的工作原理、控制方法以及仿真_第5页
第5页 / 共63页
点击查看更多>>
资源描述

《多电平逆变器的工作原理、控制方法以及仿真》由会员分享,可在线阅读,更多相关《多电平逆变器的工作原理、控制方法以及仿真(63页珍藏版)》请在金锄头文库上搜索。

1、精选优质文档-倾情为你奉上目录第一章 绪论1.1 多电平逆变器的背景电力电子技术自二十世纪50年代诞生以来,经过近半个世纪的飞速发展,至今已被广泛应用于需要电能变换的各个领域。在低压小功率的用电领域,电力电子技术的各个方面己渐趋成熟,将来研究的目标是高功率密度、高效率、高性能;而在高压大功率的工业和输配电领域,各个方面的技术正成为当今电力电子技术的研究重点。一方面,人们希望电力电子装置能够处理越来越高的电压等级和容量等级。例如,电力系统中的高压直流输电(HVDC),以静止同步补偿器(STATCOM)和有源电力滤波器(APF)等为代表的柔性交流输电技术 (FACTS),以及以高压变频为代表的大电

2、机驱动和大功率电源装置等;另一方面,为了满足输出电压谐波含量的要求,又希望这些大功率电力电子装置能工作在高开关频率下,并且尽量减少EMI问题。电力电子器件是电力电子装置的核心,在过去的几十年里,电力电子器件经历了晶闸管(SCR)、可关断晶闸管(GTO)、双极型大功率晶体管(GTR或B厂)和场控制器件(IGBT和POWERMOSFET)三个阶段。这些年来,各种新型功率器件,如工G挤,IEGT,ETO等又纷纷出现图。器件的单管容量、开关频率已经有了极大的提高,许多国外生产厂商已能提供额定值为6000V/6000A的高压大功率GTO,4500V/1200A的IGBT,4500V/400OA的IEGT

3、以及600OV/600OA的IGCT氏6,7,在某些应用场合,传统的两电平电压源逆变器拓扑,不能满足人们对高压、大功率的要求。并且,以现有电力电子器件的工艺水平,其功率处理能力和开关频率之间是矛盾的,往往功率越大,开关频率越低田。为了实现高频化和低EMI的大功率变换,在功率器件水平未有本质突破的情况下,有效的手段是从电路拓扑和控制方法上找到解决问题的方案。在过去的二十多年里,研究者们进行了大量的研究和探索,提出了多种高压大功率变换的解决思路和方法,归纳起来大致可分为以下五类:1)功率器件的串并联技术这是一种最简单和直接的方案,为了用小功率的开关器件实现大功率变换,将器件串联以承受高压,将器件并

4、联以承受大电流,这个看似简单的方法,由于功率器件参数的离散性,需要复杂的动、静态均压电路和均流电路。均压电路会导致系统控制复杂,损耗增加;而器件均流,对于具有负温度系数的功率器件来说是一件相当困难的事情。同时,对于器件串并联,驱动电路的要求也大大提高,要求延迟时间接近,并尽量短。在关断过程中,由于恢复性能的差异,数量众多的吸收电路也是必不可少的,降低了系统的可靠性,并且这一方案对输出电压谐波改善没有任何贡献,因而应用范围受到了一定的局限。2) 逆变器并联技术逆变器并联技术是将多个小容量的逆变器并联运行,并联逆变器的数目可以根据系统需要的容量来确定。这种方法的主要优点是:易于实现逆变器模块化,可

5、以灵活扩大逆变系统的容量;易于组成N+1个并联冗余系统,提高运行的可靠性和系统的可维护性。逆变器并联技术的难点是需要从控制电路上解决电压同步、稳态和动态均流、N+1冗余与热切换三大技术。3) 多重化技术为了用小容量的功率器件实现大容量的功率变换,还可利用多重化技术。所谓多重化技术,就是以多个小功率逆变器在其输入或(和)输出端通过变压器串联或并联,各个逆变器以相同频率不同相位工作,从而达到系统的高功率运行和输入、输出谐波改善的目的。多重化技术既可应用于单相电路,又可应用于三相电路。多重化技术的主要不足之处在于:需要特殊设计的输入、输出变压器,它不仅增加了系统的成本,降低了系统的效率,而且当逆变器

6、的数目增多时,变压器的设计将非常困难。4)组合逆变器相移SPWM技术组合相移SPWM技术,其基本思想是:在一个由n个模块(每个模块就是一个普通的两电平逆变器)组成的系统中,所有模块采用相同的调制波,但相邻模块的三角载波相位相差2耐(nKc),(其中Kc)三角载波与调制波的频率比)。这一相位差使得各模块所产生的SPWM脉冲在相位上错开,从而使各模块最终迭加输出的SPWM波形的等效开关频率提高到原来的nKc倍,因此可在不提高开关频率的条件下,大大减小输出谐波。从广义上说,相移SPWM组合逆变器,也是一种多重化技术。不同于上面所述的输出电压多重化,这里采用的是三角载波的多重化,因此简化了输出变压器的

7、设计。相移SPWM组合逆变器的优点为:可采用开关频率较低的大功率开关器件,实现等效的高开关频率输出,开关损耗低,输出谐波含量小,减小了输出滤波元件的尺寸和容量,简化了变压器的设计。缺点为:仍然需要工频变压器,增加了系统的损耗和成本,没有减小功率器件的电压应力。5) 多电平逆变器技术多电平逆变器技术是一种通过改进逆变器自身拓扑结构来实现高压大功率输出的新型逆变器,它无需升降压变压器和均压电路。由于输出电压电平数的增加,使得输出波形具有更好的谐波频谱,每个开关器件所承受的电压应力较小。多电平逆变器技术已成为电力电子学中以高压大功率变换为研究对象的一个新的研究领域。多电平逆变器之所以成为高压大功率变

8、换研究的热点,是因为它具有以下突出优点:l)每个功率器件仅承受l/(n-1)的母线电压(n为电平数),所以可以用低耐压的器件实现高压大功率输出,且无需动态均压电路;2)电平数的增加,改善了输出电压波形,减小了输出电压波形畸变(THD);3)可以较低的开关频率获得和高开关频率下两电平逆变器相同的输出电压波形,因而开关损耗小,效率高;4)由于电平数的增加,在相同的直流母线电压条件下,较之两电平逆变器,dy/dt应力大为减少,在高压大电机驱动中,有效防止电机转子绕组绝缘击穿,降低电磁辐射,同时改善了装置的EMI特性;5)无需输出变压器,大大地减小了系统的体积和损耗;6)降低了输入电流的谐波,减小了对

9、环境的污染;7)用于三相感应电机驱动时,可以减小或消除中性点电平波动;8)安全性更高,母线短路的危险性大大降低;多电平逆变器技术作为解决高压大功率变换的一种具有代表性和较为理想的方案,受到越来越多的关注、研究和应用。1.2多电平逆变器的研究现状德国学者Holtz于1977年首次提出三电平逆变拓扑;1980年,日本长冈科技大学提出二极管中点箱位式三电平逆变器;1983年Bhagwat和Stefanovic由三电平到多电平,奠定了NPC结构的多电平模式。多电平电路的出现为高压大容量电压型逆变器的研制开辟了一条新思路,逐渐成为大功率电机传动和大功率无损补偿等领域的重点研究对象。多电平功率变换技术是一

10、种可满足高压大功率需要的新兴技术。它可以应用在如交流电源,静态无功补偿,传动系统等诸多方面。其基本原理是将几个电平台阶合成阶梯波以逼近正弦波输出电压,一般来说,电平数越多,其分辨率越高,那么输出电压波形越接近正弦波。在电路拓扑结构上,多电平逆变器有二极管籍位、飞跨电容、H桥级联等三种基本拓扑结构。近些年来,在这几种拓扑结构的基础上又研究得到一些新型的优化拓扑。1.3多电平逆变器的应用多电平功率逆变器的应用领域非常广泛,包括电力系统中的无功功率补偿、大功率的电力传动和可再生能源系统等。具体介绍如下:1) 高压变频调速系统中高压大电机变频调速是多电平逆变器应用的一个重要领域,在大电机调速中,传统的

11、两电平高频PWM逆变器存在以下几个问题:输出电压和电流,除基波分量外,还含有一系列的谐波分量,这些谐波会使电机产生转矩脉动,使转矩出现周期性的波动,从而影响电机平稳运行和调速范围;在中压场合,提高频率一定程度上可以克服上述某些缺点,但又容易导致较高的dy/dt和浪涌电压,在电机的线圈中产生很大的共模电压,这样可能会导致电机轴承故障和转子绕组绝缘击穿,而且开关器件所产生的电压应力和开关损耗将降低电机效率,同时产生很高的EMI(IOKHZ-30MHZ),将干扰周围电子设备;高电压等级更是受到限制;功率因数低。而多电平逆变器工作在工频时,可在一定程度上克服上述几个问题。将多电平逆变器用于高压变频器领

12、域,不但可以提高逆变器的电压等级,还可以减少逆变器输出端的谐波含量和开关损耗,提高功率因数,动态性能稳定和效率高等,在高压大容量交流调速领域日益受到重视,是目前较理想的高压变频方式,该方式工作原理是利用多电平功率逆变器叠加合成正弦电压波形,随着电平数的增加,合成阶梯波形分级越多,合成的电压畸变越小。其优点是可使用常规低压功率开关器件实现高压变频调速技术,并从根本上解决谐波及EMI问题,还可避免较高的dy/dt导致电动机损坏。多电平变频器结构主要有:级联型多电平结构和二极管箱位型多电平结构。前者适合于如风机、水泵类等平方转矩负载,后者适合于轧机、卷扬机类负载。级联多电平结构的每相由几个低压PWM

13、功率单元串联组成,各功率单元由一个多绕组的隔离变压器供电,用高速微处理器实现控制和以光导纤维隔离驱动。采用功率单元串联,而不是用传统的器件串联来实现高压输出,所以不存在器件均压的问题。功率单元采用低的开关频率可以降低开关损耗,而高的等效输出开关频率和多电平可以大大改善输出波形。波形的改善除减小输出谐波外,还可以降低噪声、dy/dt值和电机的转矩脉动。所以这种变频器对电机无特殊要求,可用于普通笼型电机,且不必降额使用,对输出电缆长度也无特殊限制。由于功率单元有足够的滤波电容,变频器可承受正负30%电源电压下降和5个周期的电源丧失。这种主电路拓扑结构虽然使器件数量增加,但由于IGBT驱动功率很低,

14、且不必采用均压电路、吸收电路和输出滤波器,可使变频器的效率高达%以上。美国罗宾康(ROBICON)公司利用级联多电平结构,生产出功率为315-I000OkW的完美无谐波高压变频器,无须输出变压器直接实现了3.3kV或6kV高压输出,采用了先进的工GBT功率开关器件,达到了完美无谐波的输出波形,无须外加滤波器即可满足各国供电部门对谐波的严格要求,输入功率因数可达0.95以上,THD1%,总体效率(包括输入隔离变压器在内)高达97%。2) 静止无功补偿器无功补偿作为灵活交流输电技术的一个重要组成部分,一直是国内外相关专业领域内的研究热点。无功补偿经历了早期的基于并联补偿原理的常规静止无功补偿器SV

15、C,即晶闸管投切电容器(TSC)和晶闸管控制电抗器(TCR)之后,随着现代功率半导体器件的应用与新颖功率变换电路及控制技术相结合,产生了新型无功补偿装置:静止调相机(STATCOM).STATCOM是按照调相机的原理,由新型大功率固体电子元件构成的可调节逆变器、直流电容器组和输出变压器等组成的无转动结构的静止无功补偿装置,核心是电压源逆变器(VSI)。在实际应用中VS工的拓扑结构常见的有两种,一种是传统的6脉动桥式逆变器,另一种是多电平逆变器,后者由于开关频率低,随着电平数增加,输出电压提高了而谐波含量却减少了,从而成为非常有吸引力的方案。如西门子公司制造的一台二极管箱位三电平STATCOM,

16、已安装在丹麦REJSBYHADE风力发电厂。该STATCOM由两个三电平VSI通过一个三绕组变压器联结到一条15kV母线上,其中一个VS工联接到Y绕组,另一个VSI联接到三角形绕组,采用逆导GTO,器件的额定功率值为4500V/3000A,装置用空气冷却,无功调节范围为8 Mvar。1996年,田纳西大学的F.2.Peng等人将级联多电平结构拓扑结构用于无功补偿。由N个单相全桥模块在交流侧串联构成一相桥臂对,直流侧两边相互独立。由3个桥臂对通过星形或三角形连接构成三相系统。级联多电平结构STATCOM摒弃了多重化变压器,因此避免了耗资大、损耗大、体积大、笨重、由变压器饱和导致控制困难、不可靠等缺点。同时还可通过冗余设计,进一步提高装置的可靠性。由于具有上述优点,F.2.Peng首次提出级联多电平STATCOM概念以来,并引

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号