化学机械抛光液配方组成抛光原理及工艺

上传人:ni****g 文档编号:501308264 上传时间:2022-11-12 格式:DOCX 页数:12 大小:45.45KB
返回 下载 相关 举报
化学机械抛光液配方组成抛光原理及工艺_第1页
第1页 / 共12页
化学机械抛光液配方组成抛光原理及工艺_第2页
第2页 / 共12页
化学机械抛光液配方组成抛光原理及工艺_第3页
第3页 / 共12页
化学机械抛光液配方组成抛光原理及工艺_第4页
第4页 / 共12页
化学机械抛光液配方组成抛光原理及工艺_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《化学机械抛光液配方组成抛光原理及工艺》由会员分享,可在线阅读,更多相关《化学机械抛光液配方组成抛光原理及工艺(12页珍藏版)》请在金锄头文库上搜索。

1、化学机械抛光液配方组成,抛光原理及工艺 导读:本文详细介绍了化学机械抛光液的研究背景,机理,技术,配方等,需要注意的是,本文中所列出配方表数据经过修改,如需要更详细的内容,请与我们的技术工程师联系。 禾川化学专业从事化学机械抛光液成分分析,配方还原,研发外包服务,提供一站式化学机械抛光液配方技术解决方案。 1.背景 基于全球经济的快速发展,IC技术(Integrated circuit, 即集成电路)已经渗透到国防建设和国民经济发展的各个领域,成为世界第一大产业。IC 所用的材料主要是硅和砷化镓等,全球90%以上IC 都采用硅片。随着半导体工业的飞速发展,一方面,为了增大芯片产量,降低单元制造

2、成本,要求硅片的直径不断增大;另一方面,为了提高IC 的集成度,要求硅片的刻线宽度越来越细。半导体硅片抛光工艺是衔接材料与器件制备的边沿工艺, 它极大地影响着材料和器件的成品率,并肩负消除前加工表面损伤沾污以及控制诱生二次缺陷和杂质的双重任务。在特定的抛光设备条件下,硅片抛光效果取决于抛光剂及其抛光工艺技术。禾川化学技术团队具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。样品分析检测流程:样品确认物理表征前处理大型仪器分析工程师解谱分析结果

3、验证后续技术服务。有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案!2.硅片抛光技术的研究进展 20世纪60年代中期前,半导体抛光还大都沿用机械抛光,如氧化镁、氧化锆、氧化铬等方法,得到的镜面表面损伤极其严重。1965年Walsh和Herzog提出SiO2溶胶-凝胶抛光后,以氢氧化钠为介质的碱性二氧化硅抛光技术就逐渐代替旧方法,国内外以二氧化硅溶胶为基础研究开发了品种繁多的抛光材料。 随着电子产品表面质量要求的不断提高, 表面平坦化加工技术也在不断发展,基于淀积技术的选择淀积、溅射玻璃SOG( spin-on-glass) 、低压CVD( chemical

4、 vapor deposit) 、等离子体增强CVD、偏压溅射和属于结构的溅射后回腐蚀、热回流、淀积-腐蚀-淀积等方法也曾在IC艺中获得应用, 但均属局部平面化技术,其平坦化能力从几微米到几十微米不等, 不能满足特征尺寸在0. 35 m 以下的全局平面化要求。 1991 年IBM 首次将化学机械抛光技术( chemical mechanical polishing , 简称CMP)成功应用到64 Mb DRAM 的生产中, 之后各种逻辑电路和存储器以不同的发展规模走向CMP, CMP 将纳米粒子的研磨作用与氧化剂的化学作用有机地结合起来, 满足了特征尺寸在0. 35微米以下的全局平面化要求。C

5、MP 可以引人注目地得到用其他任何CMP 可以引人注目地得到用其他任何平面化加工不能得到的低的表面形貌变化。目前, 化学机械抛光技术已成为几乎公认为惟一的全局平面化技术,逐渐用于大规模集成电路(LSI) 和超大规模集成电路(ULSI) ,可进一步提高硅片表面质量,减少表面缺陷。3.化学机械抛光技术3.1抛光液的组成与作用 抛光液是CMP 的关键要素之一, 抛光液的性能直接影响抛光后表面的质量. 抛光液一般由超细固体粒子研磨剂( 如纳米SiO2、Al2O3 粒子等) 、表面活性剂、稳定剂、氧化剂、螯合剂、去离子水混合后组成, 固体粒子提供研磨作用, 化学氧化剂提供腐蚀溶解作用。3.1.1增稠剂

6、增稠剂又称胶凝剂,它主要是用来提高研磨液粘度,使磨料保持均匀的稳定的悬浮状态或乳浊状态,或形成胶体。增稠剂种类较多,选择时除要考虑产品的流动性、透明度、稠度、凝胶性、悬浮力与屈服值外,还应注意选用用量少而增稠效果好,与主体成分相容性好而不产生相分离,储存时不引起霉变和离析的水溶性高分子化合物。一般采用的增稠剂为:多糖类高分子化合物(淀粉、黄原胶)、纤维素高分子化合物(羟甲基纤维素、羟乙基纤维素及其盐类)、聚丙烯酸乳液类(ASE-60)等。3.1.2 分散剂 分散剂主要采用一种在分子内同时具有亲油性和亲水性两种相反性质的界面活性剂。可均匀分散那些难溶解于液体的无机固体颗粒,同时也能防止固体颗粒凝

7、聚沉降,达到悬浮磨料的效果。分散剂的作用机理:这些界面活性剂吸附于固体颗粒的表面,使凝聚的固体颗粒表面易于湿润。高分子型的分散剂,在固体颗粒的表面形成吸附层,使固体颗粒表面的电荷增加,提高形成立体阻碍的颗粒间的反作用力。磨料通常硬度很高,加入分散剂可使研磨液具有良好的分散性,使磨料分布均匀,并且短时间内不会产生沉淀,在很大程度上提高了研磨速率和研磨质量。如果磨料分散不均匀,则会使表面平整度(TTV)大大下降且容易产生划伤。在研磨液中一般采用三聚磷酸盐类或聚丙烯酸类分散剂。3.1.3 pH调节剂 抛光液中添加碱性物质,可以与硅片损伤层表面的硅原子发生反应,表面生成半程亲水性的硅氧化合物,现在通常

8、加入的是有机碱,如果采用无机碱,会引入额外的金属离子,这些金属离子在研磨过程中,会附着在硅片表面,导致其清洗困难。有机碱除了有调节pH 的作用以外,还对金属离子有螯合作用。研磨液一般用去离子水稀释十几倍后进行使用,目前所用到的有机碱通常是有机胺类,它具有一定的缓冲作用,使溶液的pH 在一定范围内保持稳定状态。3.1.4 螯合剂 据文献报道,重金属杂质Fe 会对硅片造成最严重的重金属污染,当Fe 浓度达到1010/cm3 以上时,就会对器件失效造成极为严重的影响。而硅片的研磨工艺是造成器件铁污染的主要原因,原因是研磨工艺中使用的研磨机基本上都采用球墨铸铁材质,在研磨过程中磨料会使铸铁磨盘不断损耗

9、,大量的铁进入研磨液中。而硅片表面裸露着的新断的化学键,活性很强,极易吸附极性很强的铁离子,形成准化学键,吸附在硅片表面,一般很难清洗下来,因而造成重金属铁污染。 在研磨液中,一般加入乙二胺四乙酸及其钾盐,它有五个螯合环能和几十种金属离子形成稳定的螯合物。也有采用一些高性能的鳌合剂来对研磨工艺中的重金属离子进行鳌合,如河北工业大学刘玉岭教授采用的乙二胺四乙酸四(四羟乙基乙二胺)FA/O螯合剂,它具有13个以上的螯合环,能对普通的重金属离子产生较强的螯合能力。3.1.5 表面活性剂 加入表面活性剂的目的主要是润湿磨料粒子与硅片表面,乳化研磨液内部组分,并在研磨过程中对硅片的研磨起到一定的润滑作用

10、。溶液中加入表面活性剂,活性剂分子会借助润湿作用迅速在硅片和颗粒的表面铺展开,形成一层致密的保护层。在研磨加工时,表面活性剂能起到一定的清洗作用,清洗掉研磨过程中产生的磨屑和磨粒粉末,从而提高磨片表面质量,提高研磨精度。 在研磨液中一般加入非离子型表面活性剂,这类表面活性剂润湿性、乳化性比较好。如脂肪醇聚氧乙烯醚(俗称平平加系列),它具良好湿润性能19;烷基酚聚氧乙烯醚(俗称OP 系列),化学性质稳定,抗氧化性能强。3.2 抛光机理 关于碱性SiO2的抛光机理,过去一般用化学及机械磨削理论来进行解释,也有人提出一个吸附效应的概念。碱性的抛光液和硅片接触,发生下列化学反应:Si+2OH-+H2O

11、=SiO32-+2H2 (2-1) 反应是较容易进行的。同时, 抛光液的固体颗粒及衬垫与硅片磨擦起机械磨削作用, 而在硅片抛光中, 化学效应起了主要作用, 这种化学作用是在硅表面的原子和溶液的OH-之间的氧化还原作用引起的, 根据表面化学和固体物理晶格排列理论, 由于硅单晶表面处硅原子有规则排列的终止, 硅原子及其剩余的价键具有物理吸附和化学吸附两种力、其中物理吸附是指表面晶格系统分子与它周围分子之间引力作用, 而化学吸附则是由于表面硅原子电子转移的键合过程, 对它周围的分子或离子形成强大的化学键力, 并能生成组成不易确定的表面化合物。 显然, 抛光Si表面的过程中, 这两种力将使抛光液中的由

12、于化学反应而生成的氢气和硅酸盐紧紧地吸附在表面的硅原子上, 使进一步的化学反应难于进行, 而抛光液中的SiO2颗粒由压力和软衬垫作用和表面硅原子起到紧密的接触研磨、这样除了磨削机械作用外, SiO2胶团对这些吸附物也产生了一种反吸附(即解吸) 作用, 被解脱的吸附物随SiO2研磨运动拖走后, 化学反应才得以继续进行, 因此实际上抛光过程就是化学、磨削及吸附效应同时作用的过程。 根据这种设想, 对于抛光液中的SiO2颗粒要满足两个要求:足够大的颗粒度以保持较好的研磨作用;要求其有最大的吸附能力。SiO2颗粒大, 磨削作用大, 但吸附力会降低, 所以运用这种观点也很好地解释了抛光速率和固体颗粒大小

13、不是有严格地对应关系。 在抛光工艺里, 影响抛光速率的因素有压力、PH 值、温度、抛光液浓度等等, 其中压力的影响几乎是直线关系的。由于SiO2硬度和硅单晶硬度相似(莫氏硬度均为7 ), 所以机械磨消作用较少, 使机械损伤大大减少。3.3 抛光性能的影响因素 磨粒对抛光性能的影响研究较多. 关于磨粒粒径对抛光性能的影响, 研究结果还不统一。1996 年Michael等提出了CMP 加工中颗粒尺寸对抛光液抛光性能( 如抛光速率、微划痕数量)的重要性。随后Zhou等研究了在单晶硅晶片的抛光中, 纳米SiO2 粒径(10140 nm) 对去除率的影响, 发现在试验条件下, 粒径80nm的SiO2 粒

14、子去除率最高, 得到的表面质量最好,而Bielmann等对金属钨CMP 的研究却发现, 抛光后表面的局部粗糙度与Al2O3 磨粒的粒径间没有相关性, 而去除率则随颗粒减小反而增加。 Mazaheri 等研究了CMP中磨粒的表面粗糙度对去除率的影响, 发现相同直径时, 表面不平磨粒的渗透深度比球形磨粒大, 但去除率比球形的小。 Basim等研究发现, 随着大颗粒尺寸及浓度的增加, 抛光后氧化膜表面的缺陷增加, 并且抛光机理也发生相应变化, 因而为获得满意的抛光结果, 必须采取有效的方法去除抛光液中的大颗粒。 关飞等研究表明:硅溶胶的沉降性能与其粒径大小有着密切关系,粒径越大越容易发生沉降,当粒径

15、达到200 nm 时,由于重力作用的影响,硅溶胶变得极易聚沉;溶胶浓度变大,颗粒间的距离变小,颗粒间容易发生碰撞而聚沉;择合适的分散剂能够有效防止硅溶胶发生聚沉,实验表明,以壬基酚聚氧乙烯醚为代表的非离子型表面活性剂的稳定作用要优于其它两种类型表面活性剂。3.4 抛光性能的评价 采用透射电镜或扫面电镜对经不同抛光液处理的硅片样品进行观测, 以确定研磨液的粒形、粒貌和粒径大小对研磨性能的影响。用DLS 光散射仪表征多配抛光液的粒径。4.研磨液的配制3.1 碱性SiO2 溶胶制备 二硅化硅溶胶或凝胶抛光液的基本形式是由一个SiO2抛光剂和一个碱性组份水溶液组成。SiO2颗粒要求范围为10 150纳

16、米, 碱性组成一般使用NaOH、氨或有机胺,pH 值为8.511.0,SiO2浓度为1550%。1)方法1: 称取一定量的去离子水放入烧杯中, 开动搅拌机, 其转速为80100 r/ min。加入计算量的分散剂, 待其全部溶解后继续搅拌10 min , 再将计算量的纳米级SiO2 加入上述溶液中, 再搅拌30 min。用NaOH、有机碱或盐酸调pH 值至8.510.0,补加去离子水达到预定的刻度, 停止搅拌, 放置12 h。最后将SiO2 溶胶搅拌30 min , 用中速滤纸过滤, 滤液为SiO2 溶胶。2)方法2 将Na2SiO3 溶液经过阳离子交换树脂移除Na+离子,制备出活性硅酸,在三口烧瓶内经过氢氧化钠碱化浓缩,并持续加入新鲜的硅酸分子聚合生长,聚合过程中通过加入质量分数10%的氢氧化钠溶液维持体系pH 为10,同时保持液面恒定,通过

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 建筑资料

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号