第07节常规梯度回波序列和扰相梯度

上传人:m**** 文档编号:499759886 上传时间:2023-03-09 格式:DOC 页数:4 大小:137.50KB
返回 下载 相关 举报
第07节常规梯度回波序列和扰相梯度_第1页
第1页 / 共4页
第07节常规梯度回波序列和扰相梯度_第2页
第2页 / 共4页
第07节常规梯度回波序列和扰相梯度_第3页
第3页 / 共4页
第07节常规梯度回波序列和扰相梯度_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

《第07节常规梯度回波序列和扰相梯度》由会员分享,可在线阅读,更多相关《第07节常规梯度回波序列和扰相梯度(4页珍藏版)》请在金锄头文库上搜索。

1、第七节常规梯度回波序列和扰相梯度回波序列常规GRE序列和扰相GRE序列是临床上最常用的GRE序列,也是最简单的梯度回波序列,本节我们将重点介绍其序列结构和应用。一、常规GRE序列的结构图42所示为常规GRE序列的结构示意图。实际上常规GRE序列的结构和其他所有序列一样均有五个部分构成,即射频脉冲、层面选择梯度场、相位编码梯度、频率编码和MR信号。与SE序列相比,常规GRE序列有两个特点:(1)射频脉冲激发角度小于90。;(2)回波的产生依靠读出梯度场(即频率编码梯度场)切换。常规GRE序列可以说是最简单的GRE序列,具有前一节所介绍GRE序列的所有特性。图42常规GRE序列结构图和其他所有序列

2、一样,常规GRE序列也由射频脉冲、层面选择梯度、相位编码梯度、层面选择梯度(或称读出梯度)及MR信号等五部分构成。与SE序列相比,常规GRE序列有两个特点:(1)射频脉冲激发角度小于90。;(2)回波的产生依靠读出梯度场(即频率编码梯度场)切换。把小角度脉冲中点与回波中点的时间间隔定义为TE;把两次相邻的小角度脉冲中点的时间间隔定义为TR。二、扰相GRE序列当GRE序列的TR明显大于组织的T2值时,下一次a脉冲激发前,组织的横向弛豫已经完成,即横向磁化矢量几乎衰减到零,这样前一次a脉冲激发产生的横向磁化矢量将不会影响后一次a脉冲激发所产生的信号。但当TR小于组织的T2值时,下一次a脉冲激发前,

3、前一次a脉冲激发产生的横向磁化矢量尚未完全衰减,这种残留的横向磁化矢量将对下一次a脉冲产生的横向磁化矢量产生影响,这种影响主要以带状伪影的方式出现,且组织的T2值越大、TR越短、激发角度越大,带状伪影越明显。为了消除这种伪影我们必需在下一次a脉冲施加前去除这种残留的横向磁化矢量,采用的方向就是在前一次a脉冲的MR信号采集后,下一次a脉冲来临前对质子的相位进行干扰,使其失相位加快,从而消除这种残留的横向磁化矢量。干扰的方法有两种:(1)施加扰相位梯度场,可只施加于层面选择方向或三个方向都施加;(2)施加扰相位射频脉冲。以施加扰相位梯度场应用较多,施加了扰相位梯度场后,将造成人为的磁场不均匀,加快

4、了质子失相位,从而消除这种残留的横向磁化矢量(图43)。我们把施加了扰相位梯度场或扰相位射频脉冲的梯度回波序列称为扰相GRE序列。这个序列在不同的公司有着不同的名称,如GE公司称之为SPGR(spoiledgradientrecalledecho),西门子公司称之为FLASH(fastlowangleshot),飞利浦公司称之为FFE(fastfieldecho)。TR图43扰相GRE序列结构示意图与常规GRE序列(图42)相比,扰相GRE序列唯一的不同就是在前一次脉冲的回波采集后,下一次脉冲来临前,在层面选择方向、相位编码方向及频率编码方向都施加了一个很强的梯度场,人为造成磁场不均匀,加快了

5、质子失相位,以彻底消除前一次脉冲的回波采集后残留的横向磁化矢量。三、常规GRE序列和扰相GRE序列的加权成像与自旋回波类序列一样,利用常规GRE或扰相GRE序列可以进行加权成像,但由于施加的射频脉冲以及产生回波的方式不同,GRE序列与自旋回波类序列也存在一些差别:(1)一般自旋回波类序列均采用90。脉冲激发,因此图像的纵向弛豫成分(即T1成分)由TR决定。而在GRE序列,激发角度小于90。,且激发角度可随时调整,因此GRE序列图像的T1成分受TR和激发角度双重调节。(2)由于采用小角度激发,组织纵向弛豫所需的时间缩短,因此相对SE类序列来说,GRE序列可选用较短的TR。(3)GRE序列图像的横

6、向弛豫成分(即T2成分)也由TE来决定,但由于GRE序列采集的回波未剔除主磁场不均匀造成的质子失相位,仅能反映组织T2*弛豫信息,因此利用GRE序列仅能进行T2*WI,而得不到T2WI。(一)T1WI与SE序列一样,利用GRE序列进行T1WI也需要选择短的TE以尽量剔除T2*弛豫对图像对比的污染,而且因为读出梯度场切换所需的时间明显短于180。脉冲所需的时间,因此GRE序列的最短TE明显短于SE序列。T1WI权重则取决于TR和激发角度,保持TR不变,激发角度越大,图像的T1权重越重;保持激发角度不变,TR越短,图像的T1权重越重。GRE序列一般选用较大的激发角度,如50。到80。,这时常需要采

7、用相对较长的TR(如TR=100200ms),而当TR缩短到数十毫秒甚至数毫秒时,激发角度则可调整到10。45。常规GRE和扰相GRET1WI在临床上应用非常广泛,但需要指出的是并非T1权重越重组织的对比越好,在实际应用中,应该根据需要通过TR和激发角度的调整选择适当的T1权重。(二)T2*WI在FSE序列出现前,GRE序列是常被用于T2*WI,因为SET2WI序列成像时间太长。与SE或FSE序列T2WI序列相比,GRET2*WI的成像参数具有以下特点:(1)小角度激发和相对短的TR。在SE或FSE序列中,由于90。脉冲激发后组织纵向弛豫需要很长时间,为了保证下一次90。脉冲前所有组织的纵向磁

8、化矢量都基本回到平衡状态,需要选用很长的TR,般常在2000ms以上。GRE序列中,由于采用小角度激发,组织纵向弛豫所需时间明显缩短。GRET2*WI序列一般激发角度为10。30。,TR常为200500ms。(2)相对短的TE。由于GRE序列反映的是组织的T2*弛豫信息,我们都知道组织的T2*弛豫明显快于T2弛豫,因此为了得到适当的T2*权重,TE相对较短,一般为1540ms。(三)PDWIGREPDWI在临床上应用较少,选用与T2*WI相似的激发角度和TR,选用尽量短的TE,即可得到PDWI。四、常规GRE序列和扰相GRE序列的临床应用常规GRE序列与扰相GRE序列在临床上的应用比较广泛,两

9、种序列的作用相近,但当不能满足TRT2*的条件时,则应该选用扰相GRE序列,以尽量消除带状伪影。因此临床上更多采用扰相GRE序列,下面就以扰相GRE序列为例介绍其临床应用(以下介绍的成像参数以1.5T扫描机为例,其他场强的扫描机应作适当修改)。(一)扰相GRET1WI序列扰相梯度回波T1WI在临床上的应用非常广泛,在很多部位已经成为常规检查序列。根据成像的目的不同,其成像参数变化也比较大,下面将介绍扰相GRET1WI序列目前较为常用的技术。1. 扰相GRE腹部屏气二维T1WI为上中腹部脏器检查的常规T1WI序列之一,在很多医院已经取代SET1WI。对于1.5T扫描机,一般TR为80200ms,

10、激发角度6090。,选用短的TE(通常为44.5ms),根据所选成像参数的不同,TA一般为1530s,一次屏气常可扫描1530层,可以覆盖肝胆胰脾和双肾。利用该序列除了可以进行常规T1WI夕卜,还可以进行动态增强扫描。该序列配用脂肪抑制技术可以清晰显示胰腺病变。利用该序列通过对TE的调整还可以进行化学位移成像(详见化学位移成像一节)。与SET1WI相比,该序列用于腹部成像时的优点表现在:(1)T1对比良好;(2)如果屏气良好,则没有明显的呼吸运动伪影;(3)成像速度快,可以进行动态增强扫描。该序列的缺点主要是屏气不好者有明显的呼吸运动伪影。2. 扰相GRE腹部屏气三维T1WI当腹部脏器屏气扫描

11、要求层厚较薄,或需要同时兼顾脏器成像和血管成像时可考虑选用该序列,可作平扫T1WI,也可进行动态增强扫描。在1.5T扫描机上,TR一般为48ms,选用尽量短TE(小于3ms),激发角度一般为1020。,根据成像参数和扫描层数的不同,扫描时间常为2030s。与扰相GRE二维T1WI序列相比,该序列的优点为:(1)在层面较薄时可以保持较高的信噪比;(2)没有层间距,有利于小病灶的显示;(3)可同时兼顾脏器实质成像和三维血管成像的需要。缺点主要是其软组织T1对比往往不及扰相GRE二维T1WI。3. 利用扰相GRE序列进行流动相关的MRA有关流动相关MRA的原理将在MRA节中介绍,这里仅介绍扰相GRE

12、T1WI在MRA中的应用。无论时间飞跃(TOF)MRA还是相位对比(PC)MRA,也无论是二维MRA还是三维MRA均可采用扰相GRET1WI序列,下面就以最常用的三维TOFMRA为例介绍其临床应用。在1.5T的扫描机上,三维TOFMRA序列的TR一般为2545ms,选用短的TE(般为6.9ms),激发角度一般为20。30。,根据成像参数的不同,TA一般为510min。从上述扫描参数可以看出,三维TOFMRA实际上是一个T1权重比较重的T1WI,这样可以抑制背景静止组织的信号,而有效地反映血液的流入增强效应。三维TOFMRA在临床上多用于头颈部的血管成像。利用扰相GRE序列进行的二维或三维TOF

13、或PC血管成像技术的优点在于无需注射对比剂即可清楚显示血管结构。4. 对比剂增强MRA对比剂增强(CE-MRA)一般也采用三维扰相GRET1WI序列,其原理请参阅MRA一节。在1.5T的扫描机上,TR常为36ms,TE为12ms,激发角度为25。40。,根据成像参数的不同,扫描时间常为1560s,可以进行屏气扫描。从成像参数可以看出,三维CE-MRA所用的扰相GRE序列的T1权重很重,比三维TOFMRA的T1权重更重,可有效的抑制背景组织的信号,而注射对比剂后T1值明显缩短的血液则呈现明显高信号。与前面介绍的扰相GRE腹部屏气三维T1WI相比,用于CE-MRA的扰相GRET1WI序列的T1权重

14、也更重,因此尽管血液的信号得以重点突出,而血管外软组织的信号则因明显受抑制而不能较好显示。CE-MRA目前在临床上已经得到广泛应用,血管结构显示清晰,比流动相关的MRA得到的信息更为可靠,对于直径较大的血管特别是体部和四肢的血管病变来说,CE-MRA完全可以作为首选检查手段,从而避免不必要的DSA检查。5. 扰相GRET1WI序列用于心脏成像扰相GRET1WI序列配用心电门控和呼吸门控(或屏气),可以进行心脏的亮血成像,可以较好的显示心脏的结构,也可进行心脏功能的初步分析。6. 扰相GRET1WI用于关节软骨成像利用三维扰相GRET1WI序列可很好地显示关节软骨,在该序列图像上,透明软骨呈较高

15、信号,而纤维软骨和韧带呈低信号。在1.5T扫描机上,TR常为1015ms,选用尽量短的TE,激发角度常为10。15。该序列在膝关节、髋关节、腕关节、颞颌关节等部位有较多的应用。7其他应用由于扰相GRET1WI序列成像速度比SET1WI快,临床上也可利用扰相GRET1WI序列进行脑、垂体、骨与软组织的快速T1WI或动态增强扫描。(二)扰相GRET2*WI序列的应用在FSE序列发明之前,扰相GRET2*WI在临床上的应用非常广泛,特别是用于脊柱和骨关节病变的检查。随着FSET2WI的广泛应用,扰相GRET2*WI序列的应用大大减少。在1.5T扫描机上,扰相GRET2*WI的TR常为200600ms,TE常为1540ms,激发角度常为10。30。,根据扫描参数的不同,TA通常为25min。目前扰相GRET2*WI序列主要用于:(1)大关节病变的检查,特别是膝关节半月板损伤的检查,常作为首选序列;(2)脊柱病变特别是退行性病变的检查;(3)出血病变的检查,如脑出血、关节出血等,对出血病变的检查比FSET2WI序列更为敏感。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 解决方案

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号