反激稳压电源的设计及分析

上传人:公**** 文档编号:499228013 上传时间:2023-11-01 格式:DOC 页数:7 大小:875KB
返回 下载 相关 举报
反激稳压电源的设计及分析_第1页
第1页 / 共7页
反激稳压电源的设计及分析_第2页
第2页 / 共7页
反激稳压电源的设计及分析_第3页
第3页 / 共7页
反激稳压电源的设计及分析_第4页
第4页 / 共7页
反激稳压电源的设计及分析_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《反激稳压电源的设计及分析》由会员分享,可在线阅读,更多相关《反激稳压电源的设计及分析(7页珍藏版)》请在金锄头文库上搜索。

1、基于 UC3844的反激稳压电源的设计及分析0 引言 随着现代科技的飞速发展,功率器件也不断更新,PWM技术的发展也日趋完善开关电源正朝着小、轻、薄的方向发展。由于反激变换器具有电路拓扑简单、输入电压范围宽、输入输出电气隔离、体积重量小、成本低、性能良好、工作稳定可靠等优点,被广泛应用于实际变换器设计中。以前大多数开关电源采用离线式结构,一般从辅助供电绕组回路中通过电阻分压取样,该反馈方式电路简单,但由于反馈不是直接从输出电压取样,没有与输入隔离,抗干扰能力也差,所以输出电压中仍有2的纹波,对于负载变化大和输出电压变化大的情况下响应慢,不适合精度较高或负载变化范围较宽的场合。下面的设计采用可调

2、式精密并联稳压器TL431配合光耦构成反馈回路,达到了更好的稳压效果。 芯片的介绍 UC3844是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片,由该集成电路构成的开关稳压电源与一般的电压控制型脉宽调制开关稳压电源相比具有外围电路简单、电压调整率好、频响特性好、稳定幅度大、具有过流限制、过压保护和欠压锁定等优点。其内部电路结构如图1所示。 该芯片的主要功能有:内部采用精度为20的基准电压为500V,具有很高的温度稳定性和较低的噪声等级;振荡器 target=_blank振荡器的最高振荡频率可达500kHz。内部振荡器的频率同脚8与脚4间电阻Rt、脚4的接地电容Ct的

3、关系如式(1)所列,即 其内部带锁定的PWM(Pulse Width Modulation),可以实现逐个脉冲的电流限制;具有图腾柱输出,能提供达1A的电流直接驱动MOSFET功率管。 2 电源的设计及稳压工作原理 单端反激变换器,所谓单端,指高频变压器 target=_blank变压器的磁芯仅工作在磁滞回线的一侧,并且只有一个输出端;反激式变换器工作原理,当加到原边主功率开关管的激励脉冲为高电平使MOSFET、开关管导通时,整流后的直流电压加在原边绕组两端,此时因副边绕组相位是上负下正,使整流二极管整流二极管反向偏置而截止,磁能就储存在高频变压器的原边电感线圈中;当驱动脉冲为低电平使MOSF

4、ET开关管截止时,原边绕组两端电压极性反向,使副边绕组相位变为上正下负,则整流二极管正向偏置而导通,此后储存在变压器中的磁能向负载传递释放。 图2中MOSFET功率开关管的源极所接的R12是电流取样电阻,变压器原边电感电流流经该电阻产生的电压经滤波后送入UC3844的脚3,构成电流控制闭环。当脚3电压超过1V时,PWM锁存器将封锁脉冲,对电路启动过流保护功能;UC3844的脚8与脚4间电阻R16及脚4的接地电容C19决定了芯片内部的振荡频率,由于UC3844内部有个分频器,所以驱动MOSFET功率开关管的方波频率为芯片内部振荡频率的一半;图3中变压器原边并联的RCD缓冲电路是用于限制高频变压器

5、漏感造成的尖峰电压。变压器副边整流二极管并联的RC回路是为了减小二极管反向恢复期间引起的尖峰。MOSFET功率管旁边的RCD缓冲电路是为了防止MOSFET功率管在关断过程中承受大反压。缓冲电路的二极管一般选择快速恢复二极管,而变压器二次侧的整流二极管一般选择反向恢复电压较高的超快恢复二极管。 电路的反馈稳压原理:(输出电压反馈电路如图4所示),当输出电压升高时,经两电阻尺R6、R7分压后接到TL431的参考输入端(误差放大器的反向输入端)的电压升高,与TL431内部的基准参考电压25 V作比较,使得TL431阴阳极间电压Vka降低,进而光耦二极管的电流If变大,于是光耦集射极动态电阻变小,集射

6、极间电压变低,也即UC3844的脚1的电平变低,经过内部电流检测比较器与电流采样电压进行比较后输出变高,PWM锁存器复位,或非门输出变低,于是关断开关管,使得脉冲变窄,缩短MOSFET功率管的导通时间,于是传输到次级线圈和自馈线圈的能量减小,使输出电压Vo降低。反之亦然,总的效果是令输出电压保持恒定,不受电网电压或负载变化的影响,达到了实现输出闭环控制的目的。 此设计中,输出电压通过两电阻分压并经TL43 1的内部误差放大器后,经过光耦接UC3844的误差放大器的脚1,而反向输入端脚2直接接地,输出电压反馈直接联接到脚1,而不是脚2,略过了UC3844的内部误差放大器,这使得电源的动态响应更快

7、,因为放大器用作信号传输时有一定的传输时间,输出与输入并不是同时建立,不用UC3844内部误差放大器,把反馈信号的传输缩短了一个放大器的传输时间,从而电源的动态响应更快。 3 电源的参数设计及损耗分析 31 变压器原边电感设计 311 MOSFET开关管工作的最大占空比Dmax 式中:Vor为副边折射到原边的反射电压,当输入 为AC 220V时反射电压为135V; VminDC为整流后的最低直流电压; VDS为MOSFET功率管导通时D与S极间电压,一般取10V。 312 变压器原边绕组电流峰值IPK 变压器原边绕组电流峰值IPK为 式中:为变压器的转换效率; Po为输出额定功率,单位为W。

8、313 变压器原边电感量LP 式中:Ts为开关管的周期(s); LP单位为H。 314 变压器的气隙lg 式中:Ae为磁芯的有效截面积(cm2); B为磁芯工作磁感应强度变化值(T); Lp单位取H,IPK单位取A,lg单位为mm。 32 变压器磁芯 反激式变换器功率通常较小,一般选用铁氧体磁芯作为变压器磁芯,其功率容量AP为 式中:AQ为磁芯窗口面积,单位为cm2; Ae为磁芯的有效截面积,单位为cm2; Po是变压器的标称输出功率,单位为W; fs为开关管的开关频率; Bm为磁芯最大磁感应强度,单位为T; 为线圈导线的电流密度,通常取200300Acm2, 是变压器的转换效率; Km为窗口

9、填充系数,一般为0204; KC为磁芯的填充系数,对于铁氧体为10。 根据求得的AP值选择余量稍大的磁芯,一般尽量选择窗口长宽之比较大的磁芯,这样磁芯的窗口有效使用系数较高,同时可以减少漏感。 33 变压器原副边匝数 331 变压器原边匝数NP 式中:B为磁芯工作磁感应强度变化值(T), Ae单位为cm2, Ts单位为s。 332副边匝数Ns 式中:VD为变压器二次侧整流二极管导通的正向压降。 34 功率开关管的选择 开关管的最小电压应力UDS 一般选择DS间击穿电压应比式(9)计算值稍大的MOSFET功率管。 35 变压器损耗 351 绕组铜耗计算 绕组电阻值R为 式中:MUT为平均每匝导线

10、长度(cm); N为导线匝数; 为20时导线每cm的电阻值()。 绕组铜耗PCU为 原、副边绕组电阻值可通过式(10)求出,当求原边绕组铜耗时,电流用原边峰值电流IPK来计算;求副边绕组铜耗时,电流用输出电流Io来计算。 352 磁芯损耗 磁芯损耗取决于工作频率、工作磁感应强度、电路工作状态和所选用的磁芯材料的性能。对于双极性开关变压器,磁芯损耗PC为 式中:Pb为在工作频率、工作磁感应强度下单位质量的磁芯损耗(Wkg); Gc为磁芯质量(Kg)。 对于单极性开关变压器,由于磁芯工作于磁滞回线的半区,所以磁芯损耗约为双极性开关变压器的一半。 变压器总损耗为总铜耗与磁芯损耗之和。 4 实验结果及

11、波形 实验具体参数要求如下:输入单相AC 220V(180240V),输出电压为24V,输出额定功率为72W,开关频率为20kHz。 实验结果如表1所列。图5为AC 220V输入且满载时MOSFET功率管驱动波形及电流检测电阻端电压波形,图6为220V输入时满载输出电压波形,图7为AC 220V输入时MOSFET功率管的DS极间电压波形。 从表1及波形可以看出输出电压平均值为24V,电压调整率小于01,负载调整率最大为04。可见,UC3844的脚6产生的方波直接驱动MOSFET功率管,实现了PWM控制。此设计电源的稳定性能较高,但从波形看出电流检测电阻端电压波形有尖峰,说明MOSFET功率管开关瞬间对变压器还有一定的冲击。 5 结语 电流控制型PWM芯片UC3844是一种高性能的固定频率电流型控制器,可以产生PWM脉冲直接驱动MOSFET功率管,并具有外围电路简单、安装与调试方便、性能优良等优点。本文提出了使用UC3844、TL431及光耦等构成的单端反激开关电源,直接从输出电压进行反馈,且电压反馈直接接UC3844内部误差放大器的输出端。该设计输出与输入隔离,反馈回路动态响应快,稳压控制精度高,比较适合用于小功率变换器的设计中。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号