半导体物理名词解释

上传人:工**** 文档编号:498906956 上传时间:2022-11-24 格式:DOCX 页数:7 大小:22.93KB
返回 下载 相关 举报
半导体物理名词解释_第1页
第1页 / 共7页
半导体物理名词解释_第2页
第2页 / 共7页
半导体物理名词解释_第3页
第3页 / 共7页
半导体物理名词解释_第4页
第4页 / 共7页
半导体物理名词解释_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《半导体物理名词解释》由会员分享,可在线阅读,更多相关《半导体物理名词解释(7页珍藏版)》请在金锄头文库上搜索。

1、半导体物理名词解释金刚石型结构:金刚石结构是一种由相同原子构成的复式晶体,它是由两个面心立方晶胞沿立方体的空间对角线彼此位移四分之一空间对角线长度套构而成。每个原子周围都有4个最近邻的原 子,组成一个正四面体结构。闪锌矿型结构:闪锌矿型结构的晶胞,它是由两类原子各自组成的面心立方晶格,沿空间对角线 彼此位移四分之一空间对角线长度套构而成。有效质量:粒子在晶体中运动时具有的等效质量,它概括了半导体内部势场的作用。有效质量表达式为:h 2m * =nd 2 Edk 2费米能级:费米能级是T=0 K时电子系统中电子占据态和未占据态的分界线,是T=0 K时系统中 电子所能具有的最高能量。准费米能级:统

2、一的费米能级是热平衡状态的标志。当外界的影响破坏了热平衡,使半导体处于非 平衡状态时,就不再存在统一的费米能级。但是可以认为,分别就导带和价带中的电子讲,他们 各自基本上处于平衡状态,导带与价带之间处于不平衡状态。因为费米能级和统计分布函数对导 带和价带各自仍是适用的,可以引入导带费米能级和价带费米能级,它们都是局部的费米能级。称为“准费米能级”费米面:将自由电子的能量 E等于费米能级Ef的等能面称为费米面。费米分布:大量电子在不同能量量子态上的统计分布。费米分布函数为:1f (E)=E - E1 + e k0T施主能级:通过施主掺杂在半导体的禁带中形成缺陷能级,被子施主杂质束缚的电子能量状态

3、称 为施主能级。受主能级:通过受主掺杂在半导体的禁带中形成缺陷能级,被受主杂质束缚的空穴的能量状态称 为受主能级。禁带:能带结构中能态密度为零的能量区间。价带:半导体或绝缘体中,在绝对零度下能被电子沾满的最高能带。导带:导带是自由电子形成的能量空间,即固体结构内自由运动的电子所具有的能量范围。N型半导体:在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。P型半导体:在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,形成P型半导体。简并半导体:对于重掺杂半导体,费米能级接近或进入导带或价带,导带/价带中的载流子浓度很高,泡利不相容原理起作用,电

4、子和空穴分布不再满足玻耳兹曼分布,需要采用费米分布函数描 述。称此类半导体为简并半导体。非简并半导体:掺杂浓度较低,其费米能级EF在禁带中的半导体;半导体中载流子分布可由经典 的玻尔兹曼分布代替费米分布描述时,称之为非简并半导体施主杂质:V族杂质在硅、锗中电离时,能够施放电子而产 生导电电子并形成正电中心,称它们 为施主杂质或n型杂质。受主杂质:1族杂质在硅、锗中能够接受电子而产生导电空穴,并形成负点中心,所以称它们为受主杂质或p型杂质。替位式杂质:杂质原子取代晶格原子而位于晶格点处。间隙式杂质:杂质原子位于晶格原子的间隙位置。等电子杂质:当杂质的价电子数等于其所替代的主晶格原子的价电子数时,

5、这种杂质称为等电子杂质空穴:定义 价带中空着的状态看成是带正电荷的粒子,称为空穴意义a把价带中大量电子对电流的贡献仅用少量的空穴表达出来b金属中仅有电子一种载流子,而半导体中有电子和空穴两种载流子,正是这两种载流子的相互作用,使得半导体表现出许 多奇异的特性,可用来制造形形色色的器件理想半导体(理想与非理想的区别):a原子并不是静止在具有严格周期性的晶格的格点位置上, 而是在其平衡位置附近振动 b半导体材料并不是纯净的,而是含有各种杂质即在晶格格点位置上存在着与组成半导体材料的元素不同其他化学元素的原子c实际的半导体晶格结构并不是完整无缺的,而存在着各种形式的缺陷杂质补偿:在半导体中,施主和受

6、主杂质之间有相互抵消的作用通常称为杂质的补偿作用深能级杂质:非皿、V族杂质在硅、锗的禁带中产生的施主能级距离导带较远,他们产生的受主能级距离价带也较远,通常称这种能级为深能级,相应的杂质为深能级杂质浅能级杂质:在半导体中、其价电子受到束缚较弱的那些杂质原子,往往就是能够提供载流子(电子或空穴)的施主、受主杂质,它们在半导体中形成的能级都比较靠近价带顶或导带底,因此称其为浅能级杂质。迁移率:单位电场作用下,载流子获得的平均定向运动速度,反映了载流子在电场作用下的输运能力,是半导体物理中重要的概念和参数之一。迁移率的表达式为:M =qT /m*。可见,有效质量和弛豫时间(散射)是影响迁移率的因素。

7、空穴的牵引长度:表征空穴漂移运动的有效范围的参量就是空穴的牵引长度点缺陷:是最简单的晶体缺陷,它是在 结点上或邻近的微观区域内 偏离晶体结构的正常排列 的一种缺陷。包括:间隙原子和空位是成对出现的弗仓克耳缺陷 和只在晶体内形成空位而无间隙 原子的肖特基缺陷。弗仑克耳缺陷:间隙原子和空穴成对出现导致的缺陷。肖特基缺陷:只在晶体内形成空位而无间隙原子时的缺陷。空穴:在电子挣脱价键的束缚成为自由电子,其价键中所留下来的空位。空位:在一定条件下,晶格原子不仅在其平衡位置附近振动,而且有一部分原子会获得足够的能量,脱离周围原子对他的束缚,挤入晶格原子间隙间成为间隙原子,原来的位置便成为空位本征载流子:就

8、是本征半导体中的载流子(电子和空穴),即不是由掺杂所产生出来的。非平衡载流子:半导体处于非平衡态时,比平衡态时多出来的那一部分载流子称为非平衡载流子。A p=A n热载流子:热载流子:在强电场情况下,载流子从电场中获得的能量很多,载流子的平均能量比热平衡状态时的大,因而载流子与晶格系统不再处于热平衡状态。温度是平均动能的量度,既然载流子的能量大于晶格系统的能量,人们便引入载流子的有效温度Te来描写这种与晶格系统不处于热平衡状态时的载流子,并称这种状态载流子为热载流子束缚激子:等电子陷阱俘获载流子后成为带电中心,这一中心由于库仑作用又能俘获另一种带电符号相反的载流子从而成为定域激子,称为束缚激子

9、。漂移运动:在外加电压时,导体或半导体内的载流子受电场力的作用,做定向运动。扩散运动:当半导体内部的载流子存在浓度梯度时,引起载流子由浓度高的地方向浓度低的地方J = qD dn_扩散,扩散运动是载流子的有规则运动。电子扩散电流”缈 ” d状态密度:就是在能带中能量 E附近每单位能量间隔内的量子态数。dZ g (已)=dE直接复合:导带中的电子越过禁带直接跃迁到价带,与价带中的空穴复合,这样的复合过程称为直接复合间接复合:导带中的电子通过禁带的复合中心能级与价带中的空穴复合,这样的复合过程称为间接复合。俄歇复合:载流子从高能级向低能级跃迁发生电子-空穴复合时,把多余的能量传给另一个载流子,使这

10、个载流子被激发到能量更高的能级上去,当它重新跃迁回到低能级时,多余的能量常以声子的形式放出,这种复合称为俄歇复合,显然这是一种非辐射复合。陷阱中心:半导体中的杂质和缺陷在禁带中形成一定的能级,这些能级具有收容部分非平衡载流子 的作用,杂质能级的这种积累非平衡载流子的作用称为陷阱效应。把产生显著陷阱效应的杂质和 缺陷称为陷阱中心。复合中心:半导体中的杂质和缺陷可以在禁带中形成一定的能级,对非平衡载流子的寿命有很大影响。杂质和缺陷越多,寿命越短,杂质和缺陷有促进复合的作用,把促进复合的杂质和缺陷称 为复合中心。等电子复合中心:等电子复合中心:在IHV族化合物半导体中掺入一定量的与主原子等价的某种杂

11、质原子,取代格点上的原子。由于杂质原子和主原子之间电负性的差别,中性杂质原子可以 束缚电子或空穴而成为带电中心,带电中心会吸引和被束缚载流子符号相反的载流子,形成一个 激子束缚态。爱因斯坦关系:对电子 Dn/p n =kOT/q对空穴Dp/p p =kOT/q它表明非简并情况下载流子的迁移 率和扩散系数之间的关系。陷阱效应:杂质能级积累非平衡载流子的作用就称为陷阱效应。回旋共振:一些物质如半导体中的载流子在一定的恒定磁场和高频磁场同时作用下会发生抗磁共振。砷化镓负阻效应:当电场达到一定値时,能谷1中的电子可从电场中获得足够的能量而开始转移到能谷2,发生能谷间的散射,电子的动量有较大的改变,伴随

12、吸收或发射一个声子。但是,这两个能谷不是完全相同的,进入能谷2的电子,有效质量大为增加,迁移率大大降低,平均漂移速度减小,电导率下降,产生负阻效应耿氏效应:在半导体本体内产生高频电流的现象称为耿氏效应扩散长度:扩散长度是表征载流子扩散有效范围的一个物理量,它等于扩散系数乘以寿命的平方 根。 势垒电容:在外加正向偏压增加时,将有一部分电子和空穴“存入”势垒区,反之,当正向偏压 减小时,势垒区的电场增强,势垒区宽度增加,空间电荷数量增多,这就是有一部分电子和空穴 从势垒区“取出”。对于加反向偏压的情况类似。总之, pn结上外加电压的变化,引起了电子和 空穴在势垒区的“存入”和“取出”作用,导致势垒

13、区的空间电荷数量随外加电压而变化,这和 一个电容器的充放电作用相似,这种 pn结的电容效应称为势垒电容扩散电容:正向偏压时,有空穴从 p区注入n区,于是在势垒区与n区边界n区一侧一个扩散长 度内,便形成了非平衡空穴和电子的积累,同样在p区也有非平衡电子和空穴的积累。当正向偏压增加时,由p区注入到n区的空穴增加,注入的空穴一部分扩散走了。所以外加电压变化时,n区扩散区内积累的非平衡空穴也增加,与它保持电中性的电子也相应增加。同样,p区扩散区内积累的非平衡电子和与它保持电中性的空穴也要增加。这种由于扩散区的电荷数量随外加电压的 变化所产生的电容效应,称为 pn结的扩散电容pn结隧道效应:在简并化的

14、重掺杂半导体中,n型半导体的费米能级进入了导带,p型半导体的费米能级进入了价带。在重掺杂情况下,杂质浓度大,势垒区很薄,由于量子力学的隧道效应,n区导带的电子可能穿过禁带到 p区价带,p区价带电子也可能穿过禁带到 n区导带,从而有可能 产生隧道电流。耗尽层近似:当势垒高度远大于 koT时,势垒区可近似为一个耗尽层。在耗尽层中,载流子极为 稀少,他们对空间电荷的贡献可以忽略;杂质全部电离,空间电荷完全由电离杂质的电荷形成。肖特基势垒二极管:利用金属-半导体整流接触效应特性制成的二极管称为肖特基势垒二极管,它 和pn结二极管具有类似的电流-电压关系,即它们都有单向导电性,但前者又又区别于后者的以

15、下显著特点a就载流子的运动形式而言,pn结正向导通时,由p区注入n区的空穴或由n区注 入p区的电子,都是少数载流子,他们先形成一定的积累,然后靠扩散运动形成电流。这种注入 的非平衡载流子的积累称为电荷贮存效应,它严重地影响了pn结的高频性能。而肖特基势垒二极管的正向电流,主要是由半导体的多数载流子进入金属形成的。它是多数载流子器件。因此,肖 特基势垒二极管比pn结二极管有更好的高频特性b对于相同的高度,肖特基势垒二极管的Jsd或Jst要比pn结的反向饱和电流Js大得多。欧姆接触:金属与半导体接触时还可以形成非整流接触,即欧姆接触,它不产生明显的附加阻抗, 而且不会使半导体内部的平衡载流子浓度发生显著的改变(半导体重掺杂时,它与金属的接触可 以形成接近理想的欧姆接触理想MIS结构:a金属与半导体间功函数差为零b在绝缘层中没有任何电荷且绝缘层完全不导电c绝缘层与半导体界面处不存在任何界面态深耗尽状态:在金属和半导体之间加一脉冲阶跃或高频正弦波形成的正电压时,由于空间电荷层内的少数载流子的产生速率跟不上电压的变化,反型层来不及建立,只有靠耗尽层延伸向半导体深处而产生大量受主负电荷以满足电中性条件。因此,这种情况时,耗尽层的宽度很大,可远大 于强反型的最大耗尽层宽度,且其宽度

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号