晶体三极管的作用及检测

上传人:re****.1 文档编号:498221723 上传时间:2023-12-27 格式:DOCX 页数:7 大小:23.57KB
返回 下载 相关 举报
晶体三极管的作用及检测_第1页
第1页 / 共7页
晶体三极管的作用及检测_第2页
第2页 / 共7页
晶体三极管的作用及检测_第3页
第3页 / 共7页
晶体三极管的作用及检测_第4页
第4页 / 共7页
晶体三极管的作用及检测_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《晶体三极管的作用及检测》由会员分享,可在线阅读,更多相关《晶体三极管的作用及检测(7页珍藏版)》请在金锄头文库上搜索。

1、晶体三极管具有放大、开关、振荡、混频、频率变换等作用,通常晶体三极管可以处理的功率至几百W,频率至几百MHz左右。这样的晶体三极管是在一个本征半导体中由三层n型半导体和p型半导体构成 的。本章学习晶体三极管所具有的NPN型和PNP型结构以有晶体三极管的命名方法, 并且从称为基极、集电极、发射极的三个电极中流过的电流值来研究晶体三极 管中电流的流动方法和作用。然后,为了能够正确地作用晶体三极管,对晶体 三极管的最大额定值、晶体三极管上施加的电压和电流的关系等进行分析。2.1晶体三极管是P型和N型半导体和有机组合2.1.1 晶体三极管的各种各样形状和名称 晶体三极管有三只脚,有的金属壳相当于其中一

2、只脚。如图2.1所示,对应于 不同的用途,有各种各样形状的三极管。另外,晶体三极管的名称根据JIS 。 从晶体三极管的名称,我们可以了解其大致的用途和结构。2.1.2 晶体三极管的结构和电路符号晶体三极管按结构粗分有npn型和pnp型两种类型。Npn型,两端是n型半导体,中间是p型半导体。Pnp型如同图(b)所示,两端 是p型半导体,中间是n型半导体。,被夹在中间的p型以及n型半导体部分,宽度只有数微米程度,非常的薄, 这一部分称为基区(base:B)。夹住基区的两个半导体中一个称为发射区(emitter:E),另一个称为集电区(collector:C)。还有,发射区和集电区, 例如在npn型

3、的情况下,虽然都是n型的,但发射区与集电区相比,具有杂质 浓度高出数百倍,并且交界面面积小等在结构上的不同。同图(c)、(d)是npn型以及pnp型晶体三极管的电路符号。发射极中电流的流 向用箭头表示,当为 npn 型时箭头向外,当为 pnp 型时箭头向内。2.2 晶体三极管究竟起着什么样的作用2.2.1 对晶体三极管一加上电压,其作用就明白了晶体三极管的工作原理图2.4所示的是通过在晶体三极管的基极B、集电极C、发射极E上施加电压, 来观察电压和电流关系的电路。(1) 基极电流IB不流通时在图2.4中,开关S 一断开,则由于基极开路,所 以IB (基极电流)就不流通。这时只对晶体三极管的C、

4、E间施加电压VCE (集 电极电压),观察IC (集电极电流)、IE (发射极电流)的变化,结果如表2.1 所示。(2) 基极电流流通时在图2.4中,开关S 一闭合,则由于B、E间加有电压, 所以基极电流IB流通。这时,对应于VCE和IB的变化,IC和IE的变化如表2.2 所示。(3) 从表2.1、 2.2的结果,可以看出晶体三极管具有以下的工作原理: 即使加有集电极电压,但在基极电流不流通时,集电极电流、发射极电流 也都不流通。这样的状态称为晶体三极管的截止(OFF)状态。 加上集电极电压,由基极电流的微量流通,在集电极可获得大的电流流通, 这样的状态称为晶体三极管的导通(ON)状态。 基极

5、电流流通时,即使改变集电极电压的大小,集电极电流的大小也不大变 化。 使基极电流产生微小的变化,就可以使得集电极电流产生较大的变化。 基极电流与集电极电流之和变成发射极电流,因此,下面的关系式成立。IE = IB + IC(发射极电流)=(基极电流)+(集电极电流)(b)晶体三极管的作用基极电流IB、集电极电流IC,也分别称为输入电流和输出电流,输出电流与输 入电流相比有相当的增大,此现象称为放大。这里,IC与IB的比称为直流电流放大倍数hFE,如下式所示:晶体三极管的直流电流放大倍数的数值通常大多在501000左右的范围内。因 此,根据(3)中的第、条,晶体三极管具有在ON, OFF状态间转

6、换的开关 作用和放大作用2.2.2晶体三极管中电子和空穴的运动 根据基极电流的有无,集电极中有无电流流通的原因在于晶体三极管中电子与 空穴的运动。基极电流不流通时如图2.7所示,由于在C、B之间加上了反向电压,所以在C、B的pn结中的集 电区域内的电子被E2的正电压吸引。因此,产生了耗尽层,没有从集电极向发 射极的电子和空穴的移动,因而无电流流通。(b)基极电流流通时如图2.8所示,由于在B、E之间加上了正电压,所以发射极区内的电子因E1 的负电压被排斥,与进入基区的空穴结合。因为由于结合消失的电子,从电源 E1的阴极得到补充,所以B、E之间电流流通。当发射区的电子流入基极时,由于基区极薄,作

7、为结合对象的空穴很少,因此 电子中的大部分穿过基区进入集电区。然后一边扩散一边被E2的正电压吸引。 像这样,发射区的电子借助于施加在基极的正电压的力量,可将多余的电子送 往集电区。即可以有较大的集电极电流流通。2.2.3晶体三极管电压的施加方法到目前为止,我们叙述了有关npn型晶体三极管的工作原理,对pnp型若以空 穴的运动为中心来考察的话,也是一样的。并且,为了使晶体三极管正常工作, 若是npn型管,则如图2.8和图2. 6(a)那样,若是pnp型管则如图2. 6(b)那样, 分别在B、E间加上正电压,在C、E间加上反向电压。即加上与发射极的箭头 方向一致的两个电压。2.3晶体三极管的使用方

8、法 2.3.1为了不毁坏晶体三极管要遵守最大极限值 晶体三极管使用时与二极管一样,对于电压、电流、功率、温度等都有最大极 限值,因为即使是瞬间超过所规定的最大极限值,管子也立即毁坏,所以使用 时必须十分注意。晶体三极管的最大极限值有如下的一些参数(参照表2.3)。(a)集电极基极间电压VCBO如图2.10(a)所示,发射极开路,集电极-基极间的电压不断加大,则晶体三极 管发生毁坏式的雪崩现象,集电极电流IC突然流出(参照同图) 这时的电压称为VCBO, V是voltage (电压),C是集电极,B是基极,O是指C、 B以外的电极即E为open (开路)的意思。VCBO的值越高越好,选择晶体三极

9、 管时,VCBO大约为所使用电源电压的两倍的管子较好。还有,同图(c)表示的是 pnp型的情况。集电极发射极间电压VCEO是基极开路时集电极-发射极间的电压,与VCBO的情况一样,是集电极电流突 然流出时所对应的电压。即VCEO表示集电极发射极间的耐压,通常,或与VCBO 相等,或较其还要小发射极基极间电压VEBO 是集电极开路时发射极-基极间的电压,是发射极电流突然流出时所对应的电压。 即若将发射极-基极间作为pn结型二极管考虑,由VEBO就相当于二极管的反向 耐压,表示发射极-基极间的耐压。(d )最大允许集电极电流IC 是能够流过集电极的最大直流电流,又是交流电流的平均值。在选择晶体三极

10、 管时,选用额定值大约为通常使用状态最大电流的两倍以上的管子为好。特别 是功率晶体三极管,绝不允许瞬间最大电流超过额定值。(e) 最大允许集电极耗散功率 PC 是集电极-发射极间消耗的功率,为集电极电流IC与集电极-发射极间电压VCE 的乘积,即将PC=ICVCE称为集电极耗散功率。由于集电极的耗散功率在集电极 的pn结内转换为热,导致晶体三极管内部温度上升,会烧坏管子(参照图2.11)。 这里,有关PC必须注意的问题是即使PC在额定值以内,但IC和VCE也不能超 过其各自的额定值。例如,图2.12为晶体三极管2SC1815的情况,虚线表示PC 和 IC、 VCE 的最大极限,使用时绝不能采用

11、虚线以下部分的值。并且集电极的功耗还与周围温度Ta有关。即晶体三极管自身一被加热,周围的 温度就上升,就导致集电极电流增加,晶体三极管则变得更热。如此反复地恶 性循环称为热击穿,最终导致管子毁坏(参照图 2.13)。因此,特别是对于功 率三极管,散热板使用铝板和铁板制成。还有,到目前为止讨论的周围温度通常为25OC,在小型晶体三极管的场合,不 需要散热板但是,周围温度一变为25OC以上,散热效果就变差,晶体三极管所能允许的 集电极功耗的值如图 2.14所示变得小了。因此,小型晶体三极管的场合,最好 选择晶体三极管的电源电压和使用时集电极电流的乘积在最大允许集电极功耗 的一半以下。( f) 结温

12、 Tj是能够使晶体三极管正常工作的最大结温。通常错管为7585OC,硅管为125 175OC。2.3.2 在电路设计中晶体三极管的电气特性具有重要作用 晶体三极管的电气特性表示三极管的性质,成为使三极管在最为有效的良好状 态下工作的设计标准(参照表2.4)。集电极截止电流ICBO 如图2.15所示,若在集电极-基极间加上反向电压,则集电极中流过极小的电 流。这个电流称为集电极截止电流,该值越小的晶体三极管越好,但随着温度 的上升和条件恶化,该值会变大。(b) 直流电流放大系数 hFE 如前所述,在直流情况下对应于基极电流的变化集电极电流变化的比率称为直 流电流放大倍数。如果hFE的值在50以上

13、,就可实际应用,但如图2.16所示 由于受集电极电流和周围温度影响,hFE发生变化,所以规格表中记录的必定 是测量值。(c)特征频率 fT是交流电流放大倍数hfe变为1时的频率,表征晶体三极管的高频特性(参照 图 2.17)。(d)集电极输出电容Cob 表示集电极和基极间的静电电容,该值大的晶体三极管,由于在高频时放大倍 数下降,所以不适合用于高频。(e)噪声指数NF 是输出信号和输入信号中的噪声之比,越是对小信号进行放大的电路,越是要 使用该值小的晶体三极管。用万用表检测晶体三极管的好坏如图2. 9(a)、所示,可以将发射极与基极间看作为一个pn结二极管,基极 与集电极间看作为另一个pn结二

14、极管,这两个二极管为背靠背串联连接。 因此,E、B间及B、C间若没有短路,则三极管就是正常的(参照同图(c)。 用静态特性描述晶体三极管的伏安特性我们虽然已经学习了有关晶体三极管的电压施加方法和管内电流的结构组成, 但是在使用时还必须知道施加多大的电压会有多大的电流流通。这里,表征这 一伏安行特性的曲线就是晶体三极管的静态特性。只要把晶体三极管插入夹在称为示波器的仪器上(参照图 2.18),晶体三极管 的静态特性就能立刻在显象管上描绘出来,也可以如图 2.20所示,利用电压、 电流表进行测定。同图中,发射极是与基极和集电极及电源的公共连接点(称 为共发射极电路),该电路用于测定VBE、VCE两

15、个电压和IB、IC两 个电流。因此,可以画出四条特性曲线,但由于VCE VBE曲线几乎很少使用而常 常省略,故主要使用下面三条曲线。VBE-IB特性曲线(输入特性)保持VCE不变时的VBE和IB的关系(参照图2. 21)。但是,因为该特性 不大随VCE而变,所以通常VCE数伏才用一条特性曲线表示。(b)VCE-IC特性曲线(输出特性)保持IB变时的VCE和IC的关系(参照图2. 22)。(c)IB-IC特性曲线保持VCE不变时的IB和IC的关系。但是, VCE与在VBE-IB特性曲 线中的情况一样,数伏特为一格(参照图示2.19)。本章小结晶体三极管的结构和电路符号以及IB、IC、IE之间的关

16、系直流电流放大倍数hFE集电极直流电流IC与基极直流电流IB之比:hFE=IC/IB 对晶体三极管施加电压的方法在基极-发射极间加上正向电压,集电极-发射极间加上反向电压。 晶体三极管的极限参数使用晶体三极管时,必须不超过如下的极限参数。集电极-基极间电压VCBO,集 电极-发射极间电压VCEO,发射极-基极间电压VEBO,集电极电流IC,集电极功 耗 PC(PC=ICVCE),pn 结温度 Tj。晶体三极管的静态特性 是晶体三极管的伏-安特性的曲线图表示,常使用的特性曲线有以上三种: VBE-IB (输入)特性曲线;VCE-IC (输出)特性曲线;IB-IC特性曲线1、特点:晶体三极管(简称三极管)是内部含有2个PN结,并且具有

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号