线性代数与计算机

上传人:公**** 文档编号:498182039 上传时间:2022-11-20 格式:DOCX 页数:2 大小:13.32KB
返回 下载 相关 举报
线性代数与计算机_第1页
第1页 / 共2页
线性代数与计算机_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

《线性代数与计算机》由会员分享,可在线阅读,更多相关《线性代数与计算机(2页珍藏版)》请在金锄头文库上搜索。

1、线性代数是一门应用性很强,而且理论非常抽象的数学学科,它主要讨论了矩阵理论、与矩阵结合的有限维向量空间及其线性变换的理论.在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、经济学、网络技术等无不以线性代数为基础.但是在线性代数中,大部分的计算太过繁琐.例如当把方程的阶次提高到了三元以上时,不但要求较高的抽象思维能力,而且也要求用十分繁琐的计算步骤才能解决问题,这使得大多数的工科学生对线性代数感到乏味枯燥1当前学生在学习线性代数上也存在众多问题:学习没有计划,学习环节不完整,读书不求甚解,懒于动脑思考线性代数与实际的联系,学习过程中不善于查找相关资料等.这些普遍问题使得学生的学习与现

2、实产生了严重的脱节.大学的学习内容、方法和要求,比起中学的学习发生了很大的变化,没有老师像在高中一样督促你学习,所以大部分的学生一进大学便放松了自己,就是认真学习的学生也是毫无计划,整天忙于被动的应付听课、完成作业和考试,缺乏主动自觉的学习,干什么都心中无数. 不但对线性代数的学习如此,线性代数本身的特点也使得大部分学生对线性代数生而畏之.例如,线性代数中多项式部分定义的繁琐难懂,最大公因式、不可约多项式、二次型等与实际应用的相脱离,向量的线性相关、线性空间、线性变换、欧式空间等问题概念的抽象性,行列式的求法、矩阵的相关计算容易出错,线性代数中有些知识需要进行大量的、机械的数值运算,在学生套用

3、公式时,耗费了大量的时间和精力,又往往出错.例如:在求解行列式问题上,如果矩阵A为高阶方阵,且不具备特殊条件(比如为三角矩阵等),那么在求解矩阵A的行列式时,需要将矩阵A依次按行展开,将其化为多个三阶矩阵的和才可套用公式求出,期间过程繁琐,费时且容易出错,长期下来学生学习线性代数时搞不懂、弄不清,即使经过长期理论熏陶并经过复杂的计算过程将题目解答出来,也无法判断题目的对错,更不要说学生对线性代数的研究.所以使得很多同学对线性代数失去了兴趣.但是,以上问题若用计算机求解则可几步便求出答案,达到事半功倍的效果. 大部分学生不懂也不善于运用计算机解决线性代数问题,可能存在有如下几点原因: (1)喜欢

4、文科类课程,对线性代数等数学学科没有兴趣,所以不愿去研究其解题方法,或者由于需要长期进行大量的计算,而对线性代数没有了兴趣; (2)对计算机软件不感兴趣,以至于运用软件求解计算生疏不懂; (3)不肯动脑研究计算机软件,懒于记忆软件中的常用函数; (4)想锻炼自己的动笔能力,喜欢用稿纸演算. 4.1中的例子只是根据经济学中投入产出模型简化了实际应用中的大量数据,意在说明运用计算机可以解决现实生活中普遍的问题.计算机不仅可以把复杂的运算过程变成简单的函数(如求矩阵的逆),既节省了大量的演算时间,又体会到了开动脑筋,运用自己的方法编写程序而得来的对数学的兴趣,还可以解决现实生活中比如经济、金融等方面

5、的问题. 计算机已经成为我们生活中不可缺少的一部分,我们可以充分利用计算机为我们的学习、生活提供帮助.当然,前提是我们必须动脑,动手,勤于思考才行.在计算机出现之前, 要解线性微分方程组是非常难的事情, 通常是要努力地找各种函数的原函数, 将一些积分算出来. 因此, 找原函数的技术得到广泛研究. 因为, 一旦找到了原函数, 积分的运算量就没有那么大了. 这就是到今天为止的高等数学教育还残留有过去的传统, 即对各种原函数的求解技巧津津乐道的重要原因. 但是, 实际情况中, 原函数并不总是存在的, 因此总需要数值解. 而在计算机出现之前, 数值解通过人工计算, 是相当耗时费力的. 而在计算机被大量

6、使用之后, 情况就出现了改观, 计算机在极短的时间内, 比如在0.1秒的时间, 就可以做成千上万的乘法和加法. 因此, 通过程序来求解线性微分方程组就是常见的事. 线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数的主要内容是研究代数学中线性关系的经典

7、理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那

8、么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。

9、我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是mn矩阵,B是ns矩阵,且AB0,那么用分块矩阵可知B的列向量都是齐次方程组Ax0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)nr(A)即r(A)r(B)n

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 机械/制造/汽车 > 汽车技术

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号