课程设计论文基于单片机的温度测量和报警系统的设计

上传人:新** 文档编号:497813789 上传时间:2023-12-23 格式:DOC 页数:27 大小:465KB
返回 下载 相关 举报
课程设计论文基于单片机的温度测量和报警系统的设计_第1页
第1页 / 共27页
课程设计论文基于单片机的温度测量和报警系统的设计_第2页
第2页 / 共27页
课程设计论文基于单片机的温度测量和报警系统的设计_第3页
第3页 / 共27页
课程设计论文基于单片机的温度测量和报警系统的设计_第4页
第4页 / 共27页
课程设计论文基于单片机的温度测量和报警系统的设计_第5页
第5页 / 共27页
点击查看更多>>
资源描述

《课程设计论文基于单片机的温度测量和报警系统的设计》由会员分享,可在线阅读,更多相关《课程设计论文基于单片机的温度测量和报警系统的设计(27页珍藏版)》请在金锄头文库上搜索。

1、1绪论1.1设计背景温度采集系统的开发在很大意义上提高了生产生活的需要,是工业生产和自动控制中最常见的工艺参数之一,方便了生产中对温度的控制,有效的提高了生产质量。外围电路比较简单,测量精度较高,分辨力高,使用方便。温度检测是现代检测技术的重要组成部分,在保证产品质量、节约能源和安全生产等方面起着关键的作用。本次课程设计正是为了完成温度采集而设计的,可以说与人们的日常生活是息息相关的,具有很大的现实意义。现代工业设计及日常生活中温度控制都起着重要的作用,早期的温度控制主要用于工厂时间生产中,能起到实时采集温度数据,提高生产效率,产品质量之用。随着人们生活质量的提高,现代社会中的温度控制不仅应用

2、在工厂生产方面也应用于酒店,厂房以及家庭生活中,在有些应用中,如高精度的生产厂房,对温度的要求及其严格,温度的变化极有可能对生产的产品造成极大的影响。因此,这就需要一种能够及时检测温度变化以及温度变化的设备,提供温度数据值,使人们对温度的变化做及时的调整,温度控制器可根据人们不同的应用环境自行设置该环境的温度值,及时反映生产,生活中温度变化时人们能及时看到温度变化的第一手资料,提示人们温度变化情况,协助人们能及时的调整,起到温度报警作用,使温度控制更好的服务于社会生产、生活【2】。1.2设计要求设计基于单片机的温度控制器,用于显示实时温度,并且当温度值超出系统设定的范围值时,电路要有报警的功能

3、。具体要求如下:(1)温度测量范围:0100(2)具有超出上下限报警功能(3)精度:0.1(4)利用数码管显示温度值1.3设计任务本设计以单片机为核心的温度控制器,在该设计中采用高精度的温度传感器对温度进行实时精确测量,用超低温漂移高精度运算放大器OP07将温度-电压信号进行放大,再送入12位的A/D转换器进行A/D转换以便于单片机进行处理,最后通过四位LED数码管实时显示,并有越限声光报警电路,从而实现自动检测报警【3】。2系统总体方案设计2.1系统总体设计框图及其说明CPU报警电路A/D转换电路译码、信号放大显示电路放大电路传感器图2.1 系统流程框图工作原理:在导线中输出利用传感器接收的

4、电压信号,经过运算放大器后实现A/D(模拟量转换为数字量)转换,输入至CPU也即单片机与系统自设温度值比较并输出显示实时温度值,如果高于系统自设值,则发出一个接通报警电路的信号报警,具体流程图如图2.1。2.2系统芯片及其元器件的选择2.2.1 单片机AT89S51图2.2 AT89S51芯片 AT89S51 是一个低功耗,高性能CMOS 8位单片机,片内含8k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通

5、用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案【7】。此外,AT89S51设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。由于系统控制方案简单 ,数据量也不大 ,考虑到电路的简单和成本等因素 ,因此在本设计中选用 ATMEL 公司的 AT89S51单片机作为主控芯片。

6、主控模块采用单片机最小系统是由于 AT89S51芯片内含有4 kB的 E2PROM ,无需外扩存储器 ,电路简单可靠 ,其时钟频率为 024 MHz 。在系统中,其功能是实现温度的数字值采集,完成温度的数字采集值到对应数字温度的转换计算,并把计算的数字温度转换相应的显示段码,控制LED显示器以动态扫描方式进行温度显示【4】。其主要功能特性:兼容MCS-51指令系统4k可反复擦写(1000次)ISP Flash ROM32个双向I/O口2个16位可编程定时/计数器 全双工UART串行中断口线128x8 bit内部RAM2个外部中断源双数据寄存器指针中断唤醒省电模式3级加密位设置空闲和省电功能看门

7、狗(WDT)电路软件4.5-5.5V工作电压时钟频率0-33MHz表2-1 AT89S51功能特性 AT89S51管脚说明,如图2.3所示。 图2.3 PDIP封装的AT89S51管脚VCC:电源电压输入端。 GND:电源地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4

8、TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。 P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄

9、存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。 P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3口除了作为普通I/O口,还有第二功能: P3.0 RXD(串行输入口) P3.1 TXD(串行输出口) P3.2 /INT0(外部中断0) P3.3 /INT1(外部中断1) P3.4 T0(T0定时器的外部计数输入) P3.5 T1(T1定时器的外部计数输入) P3.6 /WR(外部数据存储器的写选通

10、) P3.7 /RD(外部数据存储器的读选通) P3口同时为闪烁编程和编程校验接收一些控制信号。 I/O口作为输入口时有两种工作方式,即所谓的读端口与读引脚。读端口时实际上并不从外部读入数据,而是把端口锁存器的内容读入到内部总线,经过某种运算或变换后再写回到端口锁存器。只有读端口时才真正地把外部的数据读入到内部总线。89C51的P0、P1、P2、P3口作为输入时都是准双向口。除了P1口外P0、P2、P3口都还有其他的功能。 RST:复位输入端,高电平有效。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。 ALE/PROG:地址锁存允许/编程脉冲信号端。当访问外部存储器时,地址锁存允

11、许的输出电平用于锁存地址的低位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。 PSEN:外部程序存储器的选通信号,低电平有效。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/

12、PSEN信号将不出现。 EA/VPP:外部程序存储器访问允许。当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。 XTAL1:片内振荡器反相放大器和时钟发生器的输入端。 XTAL2:片内振荡器反相放大器的输出端【5】。2.2.2 传感器及放大器的选择根据课题设计要求可知该系统需要利用电压型温度传感器采集室温并产生10mv/的电压信号,将放大后的信号送给转换器进行转换,通过单片机设定上下限报警

13、温度并显示转换后的室温。传感器的比较选择方案如下:方案一:采用热敏电阻,可满足0-100的测量范围,但热敏电阻精度,重复性,可靠性都比较差,对于检测小于0.1的温度信号是不适用的。 方案二:采用电流型温度传感器AD590。AD590具有较高精度和重复性(重复性优于0.1)其良好的非线性可以保证优于0.2的测量精度,利用其重复性较好的特点,通过非线性补偿,可以达到+0.2测量精度。AD590 流灵敏度1uA/K。它是二端器件,具有很宽的工作电源电压范围和很高的输入阻抗。作为一种高阻电流源,对于它不需要考虑传输线上的电压信号损失和噪声干扰的问题,因此特别适合做远距离测量或控制应用。出于同样的道理,

14、AD590也特别适用于多点温度测量系统,而不必考虑选择开关或CMOS多路转换开关所引入的附加电阻造成的误差。由于采用了一种独特的电路结构,并利用最新的薄膜激光微调技术作最后的定标,因此AD590具有很高的精度。但是,由于AD590采集到的信号是电流信号,在将数据传给ADC0804前还要先把电流信号转变成电压信号,因此,用AD590来检测、采集室温的电路比较复杂。而且,在高精度测温电路中,必须考虑AD590的输出电流不被分流影响。方案三,采用电压型温度传感器LM35D。LM35D是精密集成电路温度传感器,它的输出电压与摄氏温度线性成比例, LM35D无需外部校准或微调来提供0.2的常用的室温精度

15、, 因为线性极好,所以编程时易于实现。因此,选用此方案。在温度测量电路中采用方案三,使用线性成比例(10mV/)的电压型温度传感器,之后,将采集到的微弱电压信号经过整个硬件与软件系统放大100倍后的电压信号使其显示就是室温。首先,使采集到的电压信号经过放大电路中的放大器OP07放大十倍后送入AD574的输入端,A/D转换器将模拟信号转换为数字信号后传给AT89S51。该系统以AT89S51单片机为核心,通过单片机编程可以实现高温(100)、低温(0)报警的控制,将扩大500倍的信号缩小5倍,至此已将输入的微弱电压信号放大了100倍,现在的电压值便是室温值。然后经过P1口将信号传送给LED八段数码管动态显示室温。采用MCS51系列单片机作为核心监控器对外界温度进行测量。这样,既可以降低对温度传感器和放大电路的要求,从而降低成本,又可以针对不同外部环境或不同通道对温度显示及报警设定进行灵活修改【5】。电压型温度传感器LM35D:LM35系列是精密集成电路温度传感器,它们的输出电压与摄氏温度线性成比例,因而 LM35有优于用开尔文标准的线性温度传感器,LM35无需外部校准或微调来提供1/

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号