无线传输原理

上传人:鲁** 文档编号:496908219 上传时间:2023-07-20 格式:DOCX 页数:7 大小:23.29KB
返回 下载 相关 举报
无线传输原理_第1页
第1页 / 共7页
无线传输原理_第2页
第2页 / 共7页
无线传输原理_第3页
第3页 / 共7页
无线传输原理_第4页
第4页 / 共7页
无线传输原理_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《无线传输原理》由会员分享,可在线阅读,更多相关《无线传输原理(7页珍藏版)》请在金锄头文库上搜索。

1、基于 WiFi标准的IEEE 802. 11系列无线局域网(Wireless Local Area Network,简称 WLAN )已将人们“无线”的愿望变成了现实。无需复杂的设计、烦琐的布线;无需庞大的 投入、高昂的成本。无线局域网以其功能强大、组网灵活、移动性优越等优点,提供了不受 限制的广泛应用。令“移动互联”的实现越来越轻松简单,真正地融入人们的工作生活中。 概念科技的飞速发展,信息时代的网络互联已不再是简单地将计算机以物理的方式连接起 来,取而代之的是合理地规划及设计整个网络体系、充分利用现有的各种资源,建立遵循标 准的高效可靠、同时具备扩充性的网络系统。无线网络的诸多特性,正好符

2、合了这一需求。一般而言,凡采用无线传输的计算机网络都可称为无线网。从WLAN到蓝牙、从红外 线到移动通信,所有的这一切都是无线网络的应用典范。就本文的主角一LAN而言, 从其定义上可以看到,它是一种能让计算机在无线基站覆盖范围内的任何地点(包括户内户 外)发送、接收数据的局域网形式,说得通俗点,就是局域网的无线连接形式。接着,让我 们来认识一下Wi-Fi。就目前的情况来看,Wi-Fi已被公认为WLAN的代名词。但要注意的 是,这二者之间有着根本的差异:Wi-Fi是一种无线局域网产品的认证标准;而WLAN则 是无线局域网的技术标准,二者都保持着同步更新的状态。Wi-Fi的英文全称为“Wirele

3、ss Fidelity”,即“无线相容性认证”。之所以说它是一种认 证标准,是因为它并不是只针对某一 WLAN规范的技术标准。例如,IEEE 802.11b是较早 出台的无线局域网技术标准,因此当时人们就把IEEE 802.11b标准等同于Wi-Fi。但随着无 线技术标准的多样化, Wi-Fi 的内涵也就相应地发生了变化,因为它针对的是整个 WLAN 领域。由于无线技术标准的多样化出现,所使频段和调频方式的不尽相同,造成了各种标准的 无线网络设备互不兼容,这就给无线接入技术的发展带来了相当大的不确定因素。为此。1999 年8月组建的WECA (无线以太网兼容性联盟)推出了 Wi-Fi标准,以此

4、来统一和规范整个 无线网络市场的产品认证。只有通过了 WECA 认证,厂家生产的无线产品才能使用 Wi-Fi 认证商标,有了 Wi-Fi认证,一切兼容性问题就变得简单起来。用户只需认准Wi-Fi标签, 便可保证他们所购买的无线AP、无线网卡等无线周边设备能够很好地协同工作。原理尽管各类无线网所遵循的标准和规范有所不同,但就其传输方式来看则不外两种,即无 线电波方式和红外线方式。其中红外线传输方式是目前应用最广泛的一种无线网技术,我们 所使用的家电遥控器几乎都是采用红外线传输技术。作为一种无线局域网的传输方式,红外 线传输的最大优点是不受无线电波的干扰,而且红外线的使用也不会被国家无线电管理委员

5、 会加以限制。然而,红外线传输方式的传输质量受距离的影响非常大,并且红外线对非透明 物体的穿透性也非常差,这就直接导致了红外线传输技术与计算机无线网的“主角地位”无 缘;相比之下,无线电波传输方式的应用则广泛得多。基于本文的定位,在此笔者仅简单介 绍无线电波的调制方式。1.扩展频谱方式在这种方式下,数据信号的频谱被扩展成几倍甚至几十倍后再被发射出去。这一做法固然牺 牲了频带带宽,但却提高了通信系统的抗干扰能力和安全性。采用扩展频谱方式的无线局域网一般选择的是ISM频段,这里ISM分别取于Industrial.Scientific及Medical的第一个字母。许多工业、科研和医疗设备的发射频率均

6、集中于该频段。 例如美国 ISM 频段由 902MHz928MHz, 2.4GHz2.48GHz, 5.725GHz5.850GHz三个频段 组成。如果发射功率及带宽辐射满足美国联邦通信委员会(FCC)的要求,则无须向FCC 提出专门的申请即可使用ISM频段。2窄带调制方式顾名思义,在这种调制方式下,数据信号在不做任何扩展的情况下即被直接发射出去。与扩 展频谱方式相比,窄带调试方式占用频带少,频带利用率高。但采用窄带调制方式的无线局 域网要占用专用频段,因此需经过国家无线电管理部门的批准方可使用。当然,用户也可以 直接选用 ISM 频段来免去频段申请。但所带来的问题是,当临近的仪器设备或通信设

7、备也 在使用这一频段时,会严重影响通信质量,通信的可靠性无法得到保障。目前,基于 IEEE 802.11标准的 WLAN 均使用的是扩展频谱方式。特点通常计算机组网的传输媒介主要依赖铜缆或光缆,构成有线局域网。但有线网络在许多场合 会受到布线的限制,无论是组建,还是改造的工程均十分大。而且有线局域网还存在着线路 容易损坏、网络节点不可移动等缺陷。特别是连接相距较远的节点时,铺设专用通讯线路布 线的施工难度大,费用、耗时多。这些问题都对正在迅速扩大的联网需求形成了严重的瓶颈 阻塞,限制了互联网的发展。WLAN的出现,则充分解决了有线网络先天性缺陷所带来的一系列问题。与有线网络相比, WLAN具备

8、了如下特定优势。安装便捷:在网络的组建过程中,施工周期最长、对周边环境影响最大的就是网络布线了。 而无线局域网的组建则减少甚至免去了这部分繁杂的工作量,一般只需在该区域安放一个或 多个无线接入(Access Point)设备即可建立网络覆盖。使用灵活:在有线网络中,网络设备的安放位置受网络信息点位置的限制。而WLAN 一 旦建成后,在信号覆盖区域内的任何位置都可方便地接入网络,进行数据通信。经济节约:出于有线网络灵活性的不足,往往设计者要尽可能地考虑到未来扩展的需要, 在网络规划时要预设大量利用率较低的接入点,造成资源浪费。而且一旦网络的发展超出了 预期的规划,整体的改造也将是一笔不小的开支。

9、 WLAN 的出现,则彻底解决了这一规划 上的难题,充分保护了用户的投资,而且改造和维护起来也十分简便。易于扩展:同有线局域网一样,WLAN具备了多种配置方式,能根据实际需要灵活选择、 合理搭配。如此一来,无论是几个用户的小型网还是上千用户的大型网WLAN都能胜任, 并能提供像“漫游”(Roaming)等有线网络无法提供的特性。目前,无线局域网的数据传输速率可达54Mbps,已经非常接近有线局域网的传输速率,而 且其远至20km的传输距离也是有线局域网所望尘莫及的。作为有线局域网的一种补充和扩 展,WLAN使计算机具有了可移动性,能快速、方便地解决有线网络不易实现的网络连通 问题,成为今后网络

10、发展的主导方向。标准伴随着英特尔迅驰“移动计算”技术的深入人心(如图),许多人在认识了无线局域网后将 其误认为近几年的科技成果。其实不然,早在50 年前的第二次世界大战期间,美国陆军就 已开始采用无线电波传输数据资料。由于这项无线电传输技术采用了高强度的加密方式,因 此在当时获得了美军和盟军的广泛支持。与此同时,这项技术的运用也让许多研究者得到了 灵感。到1971年时,夏威夷大学(University of Hawaii)的几名研究员创造了第一个基于“封 包式”技术的无线电网络。这个被称为ALOHNET的网络已经具备了无线局域网的雏形, 它由 7 台计算机、并采用双向星型拓扑结构组成,横跨了夏

11、威夷整个岛屿,中心计算机则放 置在瓦胡岛(Oahu Island)上,至此,无线局域网正式诞生。到了近代,伴随着以太局域网的迅猛发展,无线局域网以其安装简便、使用灵活等优点赢得 了特定市场的认可。但也正因为当时的无线局域网是作为有线局域网的一种补充,使得基于 802.3 架构上的无线网络产品存在着极易受干扰、性能不稳定、传输速率低且不易升级等缺 陷,不同厂商之间的产品也互不兼容,从而限制了无线局域网的进一步发展。于是,规范和 统一无线局域网标准的IEEE 802.11委员会在1990年10月成立,并于1997年6月制定了 具有里程碑性的无线局域网标准IEEE 802.11。IEEE 802.1

12、1标准是IEEE制定的无线局域网标准,主要对网络的物理层(PH)和媒质访问 控制层(MAC)进行规定,其中对MAC层的规定是重点。各厂商的产品在同一物理层上 可以互相操作。这样就使得无线局域网的两种主要用途“多点接入”和“多网段互联” 更易于低成本实现,从而为无线局域网的进一步普及打通了道路。规范迄今为止,电子电器工程师协会(IEEE)已经开发并制定了 4种IEEE 802.11无线局域网规 范:IEEE 802.11、IEEE 802.11b、IEEE 802.11a、IEEE 802.11g。所有的这4 种规范都使用了 防数据丢失特征的载波检测多址连接(CDMA/CD)作为路径共享协议。任

13、何局域网应用、 网络操作系统以及网络协议(包括互联网协议、TCP/IP)都可以轻松运行在基于IEEE 802.11 规范的无线局域网上,就像以太网那样。但是WLAN却没有“飞檐走壁”的连接线缆。早期的IEEE 802.11标准数据传输率为2Mbps,后经过改进,传输速率达11Mbps的IEEE 802.11b也紧跟着出台。但随着网络的发展,特别是IP语音、视频数据流等高带宽网络应用 的频繁,IEEE 802.11b规范11Mbps的数据传输率不免有些力不从心。于是,传输速率高达 54Mbps的IEEE 802.11a和IEEE 802.11g随即诞生。下面就从性能及特点上入手,来分别介 绍这三

14、种当今主流的无线网络规范。1 IEEE 80211b从性能上看,IEEE 802.11b的带宽为11Mbps,实际传输速率在5Mbps左右,与普通的 10Base-T 规格有线局域网持平。无论是家庭无线组网还是中小企业的内部局域网, IEEE802.11b都能基本满足使用要求。由于基于的是开放的2.4GHz频段,因此IEEE 802.11b的 使用无需申请,既可作为对有线网络的补充,又可自行独立组网,灵活性很强。从工作方式上看,IEEE 802.11b的运作模式分为两种:点对点模式和基本模式。其中点对点 模式是指无线网卡和无线网卡之间的通信方式,即一台装配了无线网卡的计算机可以与另一 台装配了

15、无线网卡的计算机实施通信,对于小型无线网络来说,这是一种非常方便的互联方 案;而基本模式则是指无线网络的扩充或无线和有线网络并存时的通信方式,这也是IEEE 802.11b最常用连接方式。此时,装载无线网卡的计算机需要通过“接入点”(无线AP)才 能与另一台计算机连接,由接入点来负责频段管理及漫游等指挥工作。在带宽允许的情况下, 一个接入点最多可支持1024个无线节点的接入。当无线节点增加时,网络存取速度会随之 变慢,此时添加接入点的数量可以有效的控制和管理频段。从目前大多数的应用案例来看, 接入点是作为架起无线网与有线网之间的桥梁而存在的。这一点,在随后的AP评测中,笔 者还将详细阐述。作为

16、目前最普及、应用最广泛的无线标准,IEEE 802.11b的优势不言而喻。技术的成熟,使 得基于该标准网络产品的成本得到了很好的控制,无论家庭还是企业用户,无需太多的资金 投入既可组建一套完整的无线局域网。但IEEE 802.11b的缺点也是显而易见的,11Mbps的 带宽并不能很好地满足大容量数据传输的需要,只能作为有线网络的一种补充。2 IEEE 80211a就技术角度而言,IEEE 802.11a与IEEE 802.11b虽在编号上仅一字之差,但二者间的关系并 不像其他硬件产品换代时的简单升级,这种差别主要体现在工作频段上。由于IEEE 802.11a 工作在不同于IEEE 802.11b的5.2GHz频段,避开了当前微波、蓝牙以及大量工业设备广泛 采用的2.4GHz频段,因此其产品在无线数据传输过程中所受到的干扰大为降低,抗干扰性 较IEEE 802.11b更为出色。高达54Mbps数据传输带宽,是IE

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号