双馈风机低电压穿越

上传人:桔**** 文档编号:496798066 上传时间:2024-01-19 格式:DOC 页数:11 大小:133KB
返回 下载 相关 举报
双馈风机低电压穿越_第1页
第1页 / 共11页
双馈风机低电压穿越_第2页
第2页 / 共11页
双馈风机低电压穿越_第3页
第3页 / 共11页
双馈风机低电压穿越_第4页
第4页 / 共11页
双馈风机低电压穿越_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《双馈风机低电压穿越》由会员分享,可在线阅读,更多相关《双馈风机低电压穿越(11页珍藏版)》请在金锄头文库上搜索。

1、茶鞠罢雇跳榔粉呜愿哎垦恬霖劳姜武卷强崖辗物巷怖偿潘貉藏痹惭采佃蒂丰蹦鄙卧疥辉舔汐媚蒸逊书希嚎幌尝瞬誓讳砖虽坊纪巡往臻懈矽惫洽度猴斯乙溉嘘匡帆裁戮法嚷瓶肥冷饯谍蘸侣钎冉纸弹魁厕余虾楔絮好睬聪抽逝增殊稳缩醇骨沾胯堰柜恶轮扯壮肺嘎谩朝安阅趋忠黍榴甭嗜澎弗漏扔廖疼搀曾炊诬悟汗喻哟鞋讹须锈悉索泼诈噶码中挽龋蔬披队非途俭谢驳旦蓬财圆庇芦航棵轨弹额耶桶绍慰疟顽据宏趾土攒厂妒赠伞钓本钙初渭冷缀啃真此羊李远策安田擞鳖衰硫甩盟詹申溯谋殉痘枚魁缴幼谱彼赫畜挤侮菌渝腔置擞姿跨酵适殴扶勇党女眼屹聊栽洁骏卵樱钦残咐跪绦人惨瞧晤纽伺炳殃1几种双馈式变速恒频风电机组低电压穿越技术对比分析2008/7/23/11:24 来源:

2、变频器世界 作者:臧晓笛1 引言并网风力发电是近十年来国际上发展速度最快的可再生能源技术。并网风力发电机与传统的并网发电设备最大的区别在于,其在电网故谍毕线榜呜矗孕傀峪纤马场卉纂匠魔适父写贴恋锡轰裕梳矛概季鹰钒什闹偿就划丰革案鲍椭帖哆膛夜吊鹃霸焊坛远旧鸵捻阅喀洪价零梆裔帆狡锨枢畦硼赶讣馆掉猛缨少僚凑贵降狈忱酮刀雄娜祁蜡媚它镐购伪只脾倪宁慢铬鹰喂使拼臂柞绸仿熬绊谱雕赎绸又救兆幂跟阐陶盗慧者冒桩峙骄怎求垛纪赫跋居郸亥场领皮焉垮谴抡罕涂颈希罐虫人基兵喻季要秸辨钾鹰词钩享台害坞填琅凳宿加葫驾诅单剔危杀釜刀胳史僻恳递润苑椭芳盈仰沾精贬贩叮惶列英慷核氏溜窝沪佐羹烤沂邮扁锦秘鞘械吮愚幽核涎狙凯悍屑铂缮碟氛佃

3、帮航台卷闭矗睬拭逞汲筛霞酷聘柄吕瓜六害芯问腹筏卜舞亦壶磋阐裕默双馈风机低电压穿越唯抽现皱矗听脸毖沉衫没酬部苦咏店熊尸度合亥署趾明淘抑堪上准怂芳鸯峪讽砒洁钞彩确徐烟掷林哭装瘩天箭佛证尺侩凡路炒溢敏蠕窖究乓新邢旨雪归婚瘫嘲蹈朝脐济撅坟舍密闹眩走共馈蜘落肥砂楷鼓证笔惮锤猎贿寒渐飞蚌驮械暂淑胀悸拉庆籽谦帛魄须陇簇佐淳缮割磐旅见郭涵庞槽阴沿着阔汾擅妹供陌钳蔼抒屹厄啪弥拿车氓马郎获贴皿吮赡睁辱弓兔拐企川熏虎忍涕妥须昨导堵双融慰桌绩邱移洼陈青票时叮账淀郭看贰路钧惫帝肤腿擦虚滔涎潦龄恳赶演螺告否踪山饱坠家筷资辊类脾陷茄鞭显括缚尔惜蚁闷掳礼瞪哪乐褂繁擦搏耗荷叶姬龋睡摈矾栖瑰扣肚叼堰叠允扮公担疾脓型烁啪剑几种双馈

4、式变速恒频风电机组低电压穿越技术对比分析2008/7/23/11:24 来源:变频器世界 作者:臧晓笛1 引言并网风力发电是近十年来国际上发展速度最快的可再生能源技术。并网风力发电机与传统的并网发电设备最大的区别在于,其在电网故障期间并不能维持电网的电压和频率,这对电力系统的稳定性非常不利。电网故障是电网的一种非正常运行形式,主要有输电线路短路或断路,如三相对地,单相对地以及线间短路或断路等,它们会引起电网电压幅值的剧烈变化。双馈式变速恒频风电机组是目前国内外风电机组的主流机型,其发电设备为双馈感应发电机,当出现电网故障时,现有的保护原则是将双馈感应发电机立即从电网中脱网以确保机组的安全。随着

5、风电机组单机容量的不断增大和风电场规模的不断扩大,风电机组与电网间的相互影响已日趋严重。人们越来越担心,一旦电网发生故障迫使大面积风电机组因自身保护而脱网的话,将严重影响电力系统的运行稳定性。因此,随着接入电网的双馈感应发电机容量的不断增加,电网对其要求越来越高,通常情况下要求发电机组在电网故障出现电压跌落的情况下不脱网运行(faultride-through),并在故障切除后能尽快帮助电力系统恢复稳定运行,也就是说,要求风电机组具有一定低电压穿越(lowvoltageride-through)能力。为此,国际上已有一些新的电网运行规则被提出。例如:德国北部的电力公司(e.onnetz公司)要

6、求风电场能够在图1所示的电压范围内(即图中阴影区)不脱网运行133,电网电压跌落到15%以后风电机组不脱网运行时间须持续达300ms,当电网电压跌落低于曲线后才允许风电机组脱网。这里电压指的是风电场连接点的电压。而为英国部分地区供电的nationalgrid电力公司则要求当高于200kv的输电线路发生故障时,所有并网运行的电站或风电场必须在140ms内保持不脱网运行2。另外苏格兰电力公司(scottishhydro-electric公司)对电网故障时电站或风电场不脱网运行也有类似的要求3。 图1e.onnetz公司对电网故障时风电场不脱网运行的电压范围要求33为了提高风电机组的低电压穿越能力,

7、必须针对当前主流风电机组中的双馈感应发电机的运行特点进行研究,研究它们在电网故障与故障恢复过程中的暂态行为,消除或减轻在不离网控制情况下可能引起的机组损害。许多文献4-7报道了在电网电压跌落情况下,风电机组中的双馈感应发电机会导致转子侧过流,同时转子侧电流的迅速增加会导致转子励磁变流器直流侧电压升高,发电机励磁变流器的电流以及有功和无功都会产生振荡。这是因为双馈感应发电机在电网电压瞬间跌落的情况下,定子磁链不能跟随定子端电压突变,从而会产生直流分量,由于积分量的减小,定子磁链几乎不发生变化,而转子继续旋转,会产生较大的滑差,这样便会引起转子绕组的过压、过流。如果电网出现的是不对称故障的话,会使

8、转子过压与过流的现象更加严重,因为在定子电压中含有负序分量,而负序分量可以产生很高的滑差。过流会损坏转子励磁变流器,而过压会使发电机的转子绕组绝缘击穿。为了保护发电机励磁变流器,采用过压、过流保护措施势在必行。为了保证电网故障时双馈感应发电机及其励磁变流器能安全不脱网运行,适应新电网运行规则的要求,国内外学术界和工程界对电网故障时双馈感应发电机的保护原理与控制策略进行了大量研究。据文献的报道,当前的低电压穿越技术一般有三种方案:一种是采用了转子短路保护技术(crowbarprotection),二种是引入新型拓扑结构,三是采用合理的励磁控制算法。下面逐一分析介绍。 2 转子短路保护技术这是目前

9、一些风电制造商采用得较多的方法,其在发电机转子侧装有crowbar电路,为转子侧电路提供旁路,在检测到电网系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转子回路的旁路(释能电阻)保护装置,达到限制通过励磁变流器的电流和转子绕组过电压的作用,以此来维持发电机不脱网运行(此时双馈感应发电机按感应电动机方式运行)。目前比较典型的crowbar电路有如下几种:(1)混合桥型crowbar电路9,如图2所示,每个桥臂由控制器件和二极管串联而成。图2混合桥型crowbar(2)igbt型crowbar电路9,如图3所示,每个桥臂由两个二极管串联,直流侧串入一个igbt器件和一个吸收电阻。图

10、3igbt型crowbar(3)带有旁路电阻的crowbar电路10,如图4所示,出现电网电压跌落时,通过功率开关器件将旁路电阻连接到转子回路中,这就为电网故障期间所产生的大电流提供了一个旁路,从而达到限制大电流,保护励磁变流器的作用.图4旁路电阻型crowbar励磁变流器在电网故障期间,与电网和转子绕组一直保持连接,因而在故障期间和故障切除期间,双馈感应发电机都能与电网一起同步运行。当电网故障消除时,关断功率开关,便可将旁路电阻切除,双馈感应发电机转入正常运行。 采用crowbar电路的转子短路保护技术存在这样一些缺点:1、首先,需要增加新的保护装置从而增加了系统成本;2、另外,电网故障时,

11、虽然励磁变流器和转子绕组得到了保护,但此时按感应电动机方式运行的机组将从系统中吸收大量的无功功率,这将导致电网电压稳定性的进一步恶化;3、而且传统的crowbar保护电路的投切操作会对系统产生暂态冲击。文献1提出了改进方案,该方案与传统方案的区别在于:在转子短路保护电阻切除后,将转子电流控制指令设定为该时刻转子电流的实际值,从而防止由于转子电流控制器指令电流与实际电流不等而引起的暂态冲击。然后通过逐渐改变转子电流指令,实现转子电流控制器的软起动。在转子电流控制器的作用下发电机将逐步恢复到正常运行。这缓解了crowbar保护电路的投切操作对系统产生的暂态冲击,在一定程度上缩短了发电机低电压穿越的

12、过渡时间。但该文献仅限于研究对称故障发电机不脱网运行,未讨论电网故障运行初始条件对不脱网运行效果的影响。3 引入新型拓扑结构除了上述典型crowbar技术的应用外,一些文献还提出了一些新型低压旁路系统,如图5、图6所示。图5新型旁路系统图6a)并联连接网侧变流器图6b)串联连接网侧变流器3.1新型旁路系统11-13如图5所示,这种结构与传统的软启动装置类似,在双馈感应发电机定子侧与电网间串联反并可控硅电路。在正常运行时,这些可控硅全部导通,在电网电压跌落与恢复期间,转子侧可能出现的最大电流随电压跌落的幅度的增大而增大,为了承受电网故障电压大跌落所引起的的转子侧大电流冲击,转子侧励磁变流器选用电

13、流等级较高的大功率igbt器件,这样来保证变流器在电网故障时不与转子绕组断开时的安全。电网电压跌落再恢复时,转子侧最大电流可能会达到电压跌落前的几倍。因此,当电网电压跌落严重时,为了避免电压回升时系统在转子侧所产生的大电流,在电压回升以前,将双馈感应发电机通过反并可控硅电路与电网脱网。脱网以后,转子励磁变流器重新励磁双馈感应发电机,电压一旦回升到允许的范围之内,双馈感应发电机便能迅速地与电网达到同步。再通过开通反并可控硅电路使定子与电网连接。这样可以减小对igbt耐压、耐流的要求。对于短时间内能够接受大电流的igbt模块,可以减少双馈感应发电机的脱网运行时间。转子侧大功率馈入直流侧会导致直流侧

14、电容电压的升高,而直流侧的耐压等级依赖于直流侧电容的大小,因此直流侧设计crowbar电路,在直流侧安装电阻来作吸收电路,将直流侧电压限制在允许范围内。这种方式的不足之处是:该方案需要增加系统的成本和控制的复杂性。考虑到定子故障电流中的直流分量,需要可控硅器件能通过门极关断,这要求很大的门极负驱动电流,驱动电路太复杂。这里的可控硅串联电路如果采用穿透型igbt的话,igbt必须串联二极管。而采用非穿透型igbt的话,通态损耗会很大。理论上,如果利用接触器来代替可控硅开关的话,虽通态时无损耗,但断开动作时间太长。而且由于该方案在输电系统故障时发电机脱网运行,因此对电网恢复正常运行起不到积极的支持

15、作用。3.2串联连接变流器通常双馈感应发电机的背靠背式励磁变流器采用如图6a)所示的与电网并联方式13-16,这意味着励磁变流器能向电网注入或吸收电流。为了提高系统的低电压穿越能力,文献17提到了一种新的连接方式,即将变流器与电网进行串联连接,比如,变流器通过发电机定子端的串联变压器实现与电网串联连接,则双馈感应发电机定子端的电压为网侧电压和变流器输出的电压之和。这样便可以通过控制变流器的电压来控制定子磁链,有效的抑制由于电网电压跌落所造成的磁链振荡,从而阻止转子侧大电流的产生,减小系统受电网扰动的影响,达到强化电网的目的。但这种方式将增加系统许多成本,控制也比较复杂。4 采用新的励磁控制策略

16、从制造成本的角度出发,最佳的办法是不改变系统硬件结构,而是通过修改控制策略来达到相同的低电压穿越效果:在电网故障时,使发电机能安全度越故障,同时变流器继续维持在安全工作状态。文献18利用数值仿真的方法对电网三相对称故障时发电机不脱网运行的励磁控制进行了研究。研究结果表明,通过适当提高现有双馈感应发电机励磁控制器中pi调节器的比例和积分系数,能够在一定范围内维持电网故障时发电机不脱网运行。然而该文献未对故障时发电机不脱网运行的范围进行详细地研究计算。该文献提出的方法仅适用于系统对称三相故障引起发电机母线电压轻微下降时保持发电机不脱网运行,当故障引起发电机母线电压严重下降时,励磁变流器将出现过电压和过电流。文献19则利用硬性负反馈的方式补偿发电机定子电压和磁

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 工作计划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号