细胞生物学重点

上传人:m**** 文档编号:495950011 上传时间:2022-08-15 格式:DOCX 页数:20 大小:51.13KB
返回 下载 相关 举报
细胞生物学重点_第1页
第1页 / 共20页
细胞生物学重点_第2页
第2页 / 共20页
细胞生物学重点_第3页
第3页 / 共20页
细胞生物学重点_第4页
第4页 / 共20页
细胞生物学重点_第5页
第5页 / 共20页
点击查看更多>>
资源描述

《细胞生物学重点》由会员分享,可在线阅读,更多相关《细胞生物学重点(20页珍藏版)》请在金锄头文库上搜索。

1、编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第1页 共1页第一章:1、通过学习细胞学发展简历史,你如何认识细胞学说的重要意义?从细胞的发现到细胞生物学的建立,大约经历了300多年的时间,这段历程一般分为五个阶段:细胞的发现 细胞学说的建立 细胞学说的经典时期 实验细胞学时期 细胞生物学学科的形成与发展。细胞学说的重要意义在于:它以细胞水平提供了自然界有机统一的证据,证明动植物有着共同的起源,动植物的产生、成长和构造的秘密被解开了,从而为十九世纪自然哲学领域中辩证唯物主义战胜形而上学和唯心主义,提供了一个有力的证据,为近代生物科学的发展接受有机界进化的观念准备了条件。2、细

2、胞生物学在生命科学中所处的地位,以及它与其他学科的关系1)地位:以细胞作为生命活动的基本单位,探索生命活动规律,核心问题是将遗传与发育在细胞水平上的结合。2)关系:应用现代物理学与化学的技术成就和分子生物学的概念与方法,研究生命现象及其规律。第二章1、真核细胞原核细胞有那些不同和相同点?原核与真核细胞相同点:都有类似的细胞质膜结构 都以DNA作为遗传物质,并使用的遗传密码 都是以一分为二的方式进行细胞分裂 具有相同的遗传信息转录和翻译机制,有类似的核糖体结构 代谢机制相同 具有相同的化学贮能机制 光全作用机制相同 膜蛋白的合成和插入机制相同 都是通过蛋白酶体降解蛋白质差异:原核细胞无真正的细胞

3、核,而真核细胞具有完整的细胞核 原核细胞的遗传物质DNA分子一般仅一条,而且不与蛋白质结合,真核的DNA分子常有多条,且与蛋白质结合成染色质或染色体 原核细胞无内膜系统,缺乏膜性细胞器,而真核肯有由内质网,高尔基体,溶酶体及核膜等构成的发达的内膜系统 原核细胞中不存在细胞骨架系统,而真核中具有微管,微丝和中等纤维等构成的细胞骨架系统 原核基因表达的两个基本过程转录和翻译相偶联,而真核具有明显的阶段性和区域性 原核增殖无明显周期性,无丝分裂进行,而真核细胞周期性强,以有丝分裂方式进行 原核体积小,真核体积大 原核细胞中有不少的病原微生物,而真核细胞则是构成人体和动植物体的基本单位2、试论述原核细

4、胞与真核细胞最根本的区别。答:原核细胞与真核细胞最根本的区别在于:生物膜系统的分化与演变:真核细胞以生物膜分化为基础,分化为结构更精细、功能更专一的基本单位细胞器,使细胞内部结构与职能的分工是真核细胞区别于原核细胞的重要标志;遗传信息量与遗传装置的扩增与复杂化:由于真核细胞结构与功能的复杂化,遗传信息量相应扩增,即编码结构蛋白与功能蛋白的基因数首先大大增多;遗传信息重复序列与染色体多倍性的出现是真核细胞区别于原核细胞的一个重大标志。遗传信息的复制、转录与翻译的装置和程序也相应复杂化,真核细胞内遗传信息的转录与翻译有严格的阶段性与区域性,而在原核细胞内转录与翻译可同时进行。第三章1、试比较光学显

5、微镜与电子显微镜的区别。答案要点:光学显微镜是以可见光为照明源,将微小的物体形成放大影像的光学仪器;而电子显微镜则是以电子束为照明源,通过电子流对样品的透射或反射及电磁透镜的多级放大后在荧光屏上成像的大型仪器。它们的不同在于:照明源不同:光镜的照明源是可见光,电镜的照明源是电子束;由于电子束的波长远短于光波波长,因而电镜的放大率及分辨率显著高于光镜。透镜不同:光镜为玻璃透镜;电镜为电磁透镜。分辨率及有效放大本领不同:光镜的分辨率为0.2m左右,放大倍数为1000倍;电镜的分辨率可达0.2nm,放大倍数106倍。真空要求不同:光镜不要求真空;电镜要求真空。成像原理不同:光镜是利用样品对光的吸收形

6、成明暗反差和颜色变化成像;而电镜则是利用样品对电子的散射和透射形成明暗反差成像。生物样品制备技术不同:光镜样品制片技术较简单,通常有组织切片、细胞涂片、组强压片和细胞滴片等;而电镜样品的制备较复杂,技术难度和费用都较高,在取材、固定、脱水和包埋等环节上需要特殊的试剂和操作,还需要制备超薄切片。2、为什么电子显微镜不能完全替代光学显微镜?答案要点:电子显微镜用电子束代替了光束,大大提高了分辨率,电子显微镜相对光学显微镜是个飞跃。但是电子显微镜:样品制备更加复杂;镜筒需要真空,成本更高;只能观察“死”的样品,不能观察活细胞。光学显微镜技术性能要求不高,使用容易;可以观察活细胞,观察视野范围广,可在

7、组织内观察细胞间的联系;而且一些新发展起来的光学显微镜能够观察特殊的细胞或细胞结构组分。因此,电子显微镜不能完全代替光学显微镜。3、为什么说细胞培养是细胞生物学研究的最基本的技术之一?细胞培养的理论依据是细胞全能性,是生命科学的研究基础,是细胞工程乃至基因工程的应用基础。植物细胞的培养为植物育种开辟了一条崭新的途径;动物细胞培养为疫苗的生产、药物的研制与肿瘤防治提供全新的手段;特别是干细胞的培养与定向分化的技术的发展,有可能在体外构建组织甚至器官,由此建立组织工程,同时在细胞治疗及其基因治疗相结合的应用中显示出诱人的前景。第四章1、生物膜的基本结构特征是什么?这些特征与它的生理功能有什么联系?

8、膜的流动性:生物膜的基本特征之一,细胞进行生命活动的必要条件。1)膜脂的流动性主要由脂分子本身的性质决定的,脂肪酸链越短,不饱和程度越高,膜脂的流动性越大。温度对膜脂的运动有明显的影响。在细菌和动物细胞中常通过增加不饱和脂肪酸的含量来调节膜脂的相变温度以维持膜脂的流动性。在动物细胞中,胆固醇对膜的流动性起重要的双向调节作用。 膜蛋白的流动:荧光抗体免疫标记实验;成斑现象或成帽现象 2)膜的流动性受多种因素影响:细胞骨架不但影响膜蛋白的运动,也影响其周围的膜脂的流动。膜蛋白与膜分子的相互作用也是影响膜流动性的重要因素。3)膜的流动性与生命活动关系:信息传递;各种生化反应;发育不同时期膜的流动性不

9、同膜的不对称性:1)膜脂与糖脂的不对称性:糖脂仅存在于质膜的ES面,是完成其生理功能的结构基础2)膜蛋白与糖蛋白的不对称性:膜蛋白的不对称性是指每种膜蛋白分子在细胞膜上都具有明确的方向性;糖蛋白糖残基均分布在质膜的ES面;膜蛋白的不对称性是生物膜完成复杂的在时间与空间上有序的各种生理功能的保证。2、何谓膜内在蛋白?膜内在蛋白以什么方式与膜脂结合?内在蛋白又称融合蛋白,跨膜蛋白,部分或全部镶嵌在细胞膜中或内外两侧,以非极性氨基酸与指双分子层的非极性疏水相互作用而结合在质膜上。实际上,融合蛋白几乎都是完全穿过脂双层的蛋白,亲水部分暴露在膜的一侧或两侧表面,疏水区同脂双分子层的疏水尾部相互作用,融合

10、蛋白所含疏水氨基酸的成分较高,与膜脂结合的方式主要有:膜蛋白质的跨膜结构域与脂双层分子的疏水核心的相互作用跨膜结构域两端携带正电荷的氨基酸残基,与磷脂分子带负电的极性头形成离子键,或通过Ca2+、Mg2+等与这结合相互作用某些膜蛋白在细胞质基质一侧的半胱氨酸残基上共价结合脂肪酸分子,插入脂双层之间,进一步加强膜蛋白与脂双层结合力,还有少数蛋白与糖脂共价结合。3、细胞表面有哪些常见的特化结构?膜骨架的基本结构与功能是什么?1)特化结构包括膜骨架,鞭毛和纤毛,微绒毛及细胞的变形足等等。2)膜骨架由膜蛋白和纤维蛋白组成的网架,它参与维持细胞质膜的形状并协助质膜完成多种生理功能,光镜下发现膜骨架为0.

11、2um厚。膜骨架是通过红细胞膜研究出来的。红细胞的外周蛋白主要位于红细胞膜的内表面,并编织成纤维状的骨架结构,以维持红细胞的形态,限制膜整合蛋白的移动。第五章1、物质跨膜运输有哪几种方式?它们的异同点。 跨膜运输:直接进行跨膜转运的物质运输,又分为简单扩散、协助扩散和主动运输。 1) 简单扩散:顺物质电化学梯度,不需要膜运输蛋白,利用自身的电化学梯度势能,不耗细胞代谢能; 2) 协助扩散:顺物质电化学梯度,需要通道蛋白或载体蛋白,利用自身的电化学梯度势能,不耗细胞代谢能; 与简单扩散相比特点:转运速率高;存在最大转运速率; 有膜转运蛋白参与,有特异性3) 主动运输:逆物质电化学梯度,需要载体蛋

12、白,消耗细胞代谢能。 2、比较主动运输与被动运输的特点及其生物学意义。1)主动运输的特点及其生物学意义:特点:由载体蛋白所介导的物质逆浓度梯度或电化学梯度由浓度低的一侧向浓度高的一侧进行跨膜转运。需要与某种释放能量的过程相偶联。类型:由ATP直接提供能量(Na+-K+泵、Ca2+泵、)、间接提供能量(Na+-K+泵或H+泵、载体蛋白的协同运输)、光驱动的三种类型。生物学意义:动物细胞借助Na+-K+泵维持细胞渗透平衡,同时利用胞外高浓度的Na+所储存的能量,主动从细胞外摄取营养;植物细胞、真菌(包括酵母)和细菌细胞借助膜上的H+泵,将H+泵出细胞,建立跨膜的H+电化学梯度,利用H+电化学梯度来

13、驱动主动转运溶质进入细胞;Ca2+泵主要存在于细胞膜和内质网膜上,将Ca2+输出细胞或泵入内质网腔中储存,以维持细胞内低浓度的游离Ca2+,Ca2+对调节肌细胞的收缩与舒张至关重要。2)被动运输的特点及其生物学意义:特点:物质的跨膜运输的方向是由高浓度向低浓度,运输动力来自物质的浓度梯度,不需要细胞提供代谢能量。类型:单扩散和载体介导的协助扩散。协助扩散的载体为:载体蛋白和通道蛋白,载体蛋白既可介导被动运输和主动运输;通道蛋白只能介导被动运输。生物学意义:每种载体蛋白能与特定的溶质分子结合,通过一系列构象改变介导溶质分子的跨膜转运;通道蛋白是多次跨膜亲水、离子通道,充许适宜大小分子和带电荷的离

14、子通过,其显著特点为:具有离子选择性,转运速率高,净驱动力是溶质跨膜的电化学梯度;离子通道是门控的,其活性是由通道开或关两种构象所调节,通过通道开关应答于适当地信号。3、载体蛋白与通道蛋白的特点比较:载体蛋白是在生物膜上普遍存在的多次跨膜蛋白分子。可以和特定的溶质分子结合,通过构象改变介导溶质的跨膜运输。特点: 特异性;多次跨膜;具通透酶性质;载体蛋白既参与被动的物质运输,也参与主动的物质运输 通道蛋白是横跨质膜的亲水性通道,其跨膜部分形成亲水性的通道,当这些孔道开放时允许适宜大小的分子和带电荷的离子通过,通道蛋白所介导的被动运输不需要与溶质分子结合。又称为离子通道。特点:1、具有极高的转运速

15、率和高度的具有离子选择性,离子通道对被转运离子的大小与电荷都有高度的选择性,而且转运速率高,可达106个离子/s,其速率是已知任何一种载体蛋白的最快速率的1 000倍以上。 2、 离子通道没有饱和值。3、 离子通道是门控的,即离子通道的活性由通道开或关两种构象所调节,并通过通道开关应答于适当的信号。多数情况下离子通道呈关闭状态,只有在膜电位变化、化学信号或压力刺激后,才开启形成跨膜的离子通道 4、说明Na+-K+泵的工作原理及其生物学意义。Na+-K+泵是一种典型的主动运输方式,由ATP直接提供能量。Na+-K+泵存在于细胞膜上,是由和二个亚基组成的跨膜多次的整合膜蛋白,具有ATP酶活性。工作原理:在细胞内侧亚基与Na+相结合促进ATP水解,亚基上的天门冬氨酸残基磷酸化引起亚基构象发生变化,将Na+泵出细胞,同时细胞外的K+与亚基的另一位点结合,使其去磷酸化,亚基构象再度发生变化将K+泵进细胞,完成整个循环。Na+依赖的磷酸化和K+依赖的去磷酸化引起构象变化有序交替进行。每个循环消耗一个ATP分子,泵出3个Na+和泵进2个K+。生物学意义:动物细胞借助Na+-K+泵维持细胞渗透平衡,同时利用胞外高浓度的Na+所储存的能量,主动从细胞外摄取营养。5、比较胞饮作用和吞噬作用的异同。胞饮和吞噬是细胞胞吞作用的两种类型。胞饮作用是一个连续发生的过程,所有真核细胞都能通过胞

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > PPT模板库 > 总结/计划/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号