蛋白质组学技术服务资金壁垒

上传人:pu****.1 文档编号:495665333 上传时间:2022-10-26 格式:DOCX 页数:21 大小:28.89KB
返回 下载 相关 举报
蛋白质组学技术服务资金壁垒_第1页
第1页 / 共21页
蛋白质组学技术服务资金壁垒_第2页
第2页 / 共21页
蛋白质组学技术服务资金壁垒_第3页
第3页 / 共21页
蛋白质组学技术服务资金壁垒_第4页
第4页 / 共21页
蛋白质组学技术服务资金壁垒_第5页
第5页 / 共21页
点击查看更多>>
资源描述

《蛋白质组学技术服务资金壁垒》由会员分享,可在线阅读,更多相关《蛋白质组学技术服务资金壁垒(21页珍藏版)》请在金锄头文库上搜索。

1、蛋白质组学技术服务资金壁垒一、 蛋白质组学技术服务资金壁垒蛋白质组分析及生物信息学分析服务需要大量高水平的研发及生产人员、领先的软硬件设施和研发场地。行业所需的研发、生产人员薪酬水平较高,核心硬件设备昂贵、软件开发难度大周期长,人才培养、软硬件设施搭建及优化和工作地建设所需要的时间周期长,对行业内企业造成了较大资金压力。新进入行业的企业必须拥有相当的资金实力,以承担发展初期的刚性费用和固定资产投资。二、 临床蛋白质组学具备巨大发展空间临床蛋白质组学泛指所有以临床样本为分析对象的蛋白质组分析,其分支之一是在大队列人群中进行生物标志物的验证。蛋白质生物标志物一般是由发现性蛋白质组分析从相对少量的样

2、本中鉴定而来,但后续验证工作是在几百甚至上千人样本的大队列分析中完成。以质谱为基础的靶向蛋白质组学在这类大队列分析上具备通量、灵敏度和特异性的明显优势。基于在生物标志物验证中的独特优势,靶向蛋白质组学被顶级期刊自然方法评选为2012年年度方法。随着精准医学和转化医学的快速发展,越来越多新发现蛋白质生物标志物的验证工作,将为靶向蛋白质组分析带来巨大的市场需求。针对经过验证、通过审批后的生物标志物,靶向蛋白质组学能够迅速开发相应的临床诊断方法,通过检测病人样本,为医生进行诊断和用药提供数据支持。此外,生物标志物的临床检测的未来发展趋势之一是多通路检测,即在单次检测中包含多个生物标志物,达到全面了解

3、病理状态的目的。与传统的免疫组化和酶联免疫吸附等临床检测方法相比,靶向蛋白质组分析可以在相同灵敏度的基础上,发挥高特异性的优势,提高多通路检测的准确性。三、 行业市场驱动因素蛋白质组学在生命科学与医学研究和应用中的地位进一步凸显:随着人类等生物体全基因组序列测序的完成和测序技术的成熟,作为生命个体的设计蓝图的基因组中包含的信息已经得到了相对充分的挖掘。随之而来更深入的科学问题集中于相同的基因组为什么会表达出不同的蛋白质组,蛋白质组作为生命功能的最终执行者以何种机制完成生命个体复杂的生理过程以及何种原因导致了病理状态的发生和发展。在后基因组学时代,以蛋白质组学为核心的组学技术正成为生命科学和生物

4、医学研究的核心驱动力之一。突破新药研发效率与成功率瓶颈的驱动:在当前业界主流的药物研发模式下,投入多、周期长、效率低、成功率低是难以克服的行业痛点。很大一部分进入、期临床试验的药物分子无法顺利进入期临床试验;即使是进入期临床试验的药物分子,其、期临床试验结果仍无法对期临床试验结果进行有效预测。这些现象揭示出临床试验设计的缺陷,即缺乏特异性高、对药效有预测性质的生物标志物来挑选最适合的病人入组进行临床试验。帕博利珠单抗(pembrolizumab)的成功关键之一是利用病人肿瘤组织中的PD-L1的表达量作为入组临床试验的筛选标准。考虑到蛋白质与疾病发生发展的直接联系,利用蛋白质组学寻找药敏标志物、

5、优化临床试验设计,使得提高药物研发成功率成为可能。有望解决精准医学发展的困境:基因组学时代的精准医学是以寻找驱动基因突变为基础的模式。但越来越多的证据表明,基因组学鉴定到的数量庞大的基因突中只有少数的突变被证明是驱动基因突变。而依据驱动基因突变成功研发的靶向治疗药物,在带有此突变基因的病人群体中的治疗有效率依然不高。单纯以基因突变进行疾病诊断的模式仍存在一定不足,间接导致了当前精准医学的发展困境。导致疾病发生的三个内在因素中,基因突变直接引起疾病发生的比例有限,而很大一部分致病因素是由蛋白质表达量异常及蛋白质修饰异常引起的。因此,为应对精准医学当前所面临的困境,突破口之一就是在蛋白质组与蛋白质

6、修饰组的维度上深刻理解疾病的精准状态,并进一步用于精准诊断与生物标志物驱动的精准新药开发。四、 蛋白质组学的应用(一)蛋白质组学在基础生命科学中的应用近年来,随着技术手段的快速发展,蛋白质组学已经从简单的蛋白质定性鉴定拓展到涵盖蛋白质定量表达分析、蛋白质翻译后修饰鉴定和定量、蛋白质互作分析、蛋白质复合物成分解析、空间蛋白质组分析、单细胞蛋白质组分析等多个领域。特别是新型蛋白质翻译后修饰领域近年来已取得众多突破性进展,通过高精度质谱分析,研究人员在组蛋白中鉴定出十余种新型的蛋白质翻译后修饰。真核生物的DNA分子在细胞核内围绕着组蛋白形成核小体,而组蛋白上发生蛋白质翻译后修饰改变了局部区域的电荷属

7、性和空间位阻,影响了DNA和组蛋白缠绕的紧密程度,从而影响基因的表达调控。因此新型蛋白质翻译后修饰的发现极大丰富了基因表达调控的机制,即在不改变DNA序列的前提条件下影响基因表达,对生物过程进行调控,甚至影响个体的表型。蛋白质组学在后基因组学时代的另一突破应用是形成了与基因组学互为补充的一门新兴学科,蛋白质基因组学。蛋白质基因组学利用基因组和转录组测序数据生成个性化的蛋白质序列数据库来鉴定包含突变位点的肽段。反之,蛋白质组学数据为基因组信息提供了功能背景,并完善了转录组的信息模型。深度挖掘蛋白质基因组学数据可以帮助研究人员深入理解疾病的发生、发展机理;基因突变对于下游表达产物蛋白质的影响;对疾

8、病在分子水平进行分型,指导临床诊断和治疗;鉴定肿瘤特异性新抗原,为开发肿瘤免疫新疗法提供基础。(二)蛋白质组学在工业领域中的主要应用蛋白质是生命活动的主要承担者,也是疾病发生发展过程中主要的生物标志物。蛋白质组学集成了高通量和高精准度的特性,在生物学、医学、药学等相关产业领域逐渐得到广泛的应用,精准医疗是指以个人遗传信息、临床信息和人群队列信息为基础,应用现代遗传技术、分子影像技术、生物信息技术,结合患者的生活环境和生活方式,实现疾病的精准分类和诊断,并制定具有个性化的疾病预防和治疗方案。自2015年,精准医疗已被确立为我国的国家级发展战略。蛋白质组学结合自身高灵敏度、高通量、高效等特点,在精

9、准医疗中具有广阔的应用前景,致力于在研发、诊断、治疗和预后的全周期价值链中发挥效用。五、 中国蛋白质组学行业产业链蛋白质组学是一门致力于研究生物体中在特定条件、特定时间所表达的全部蛋白质的表达和功能全貌和图谱,分析细胞内动态变化的蛋白质成分、表达水平与修饰状态,了解其相互之间的作用与联系。蛋白质组学产业作为一门新兴行业,在我国发展起步晚,产业链发展不够成熟,仍处于产业发展的早期阶段。蛋白质组学技术服务的前端涉及复杂的生物样本处理过程,后期涉及质谱仪仪器性能的调谐、技术参数的优化与样本的质谱分析,以及蛋白质组生物信息学数据处理的深入挖掘。在蛋白质组学行业,欧美企业布局早,经过多年发展成熟后逐渐得

10、到资本市场认可,已有包括Seer(Nasdaq:SEER)、Olink(Nasdaq:OLK)、Nautilius(Nasdaq:NAUT)、Quantum-Si(Nasdaq:QSI)以及Somalogic(Nasdaq:SLGC)在内的多家生物科技公司从2020年开始陆续通过IPO或SPAC等方式登陆纳斯达克市场上市交易。与之相比,国内企业起步较晚,目前形成了以景杰生物、中科新生命等为代表专注于蛋白质组学的企业,以及以诺禾致源、华大基因等为代表的主营业务为基因组学业务同时提供蛋白质组学业务的大型成熟企业。随着生命科学与医学研究的发展以及相关技术的进步,蛋白质组学和抗体科研试剂的应用场景持续

11、扩大,行业市场实现了快速的发展,未来预计还将进一步扩大。六、 基于质谱的蛋白质组学的应用和前景(一)基于质谱的蛋白质组学蛋白质组学在21世纪取得了重要进展,包括质谱和X射线晶体学等成像方面新技术的出现,以及免疫检定试剂方面的生物化学方法创新,使得可以分离特定的蛋白进行进一步的研究。近些年高分辨率质谱(MassSpectrometry,MS)迅速发展,成为了蛋白质组学领域的核心技术。此外,质谱法是基于蛋白质和肽段科学分析进行生物标记物的发现的黄金标准。质谱仪是指一系列在行业中用于分子、化学和材料分析的仪器。质谱的检测使用基于同一个检测原理的一系列仪器:即通过读取离子的质量电荷比来识别物质。这些质

12、谱仪在设计、IP和功能上在不同细分市场上有很大的不同。质谱分析是一种测量离子质荷比(质量-电荷比,m/z)的分析方法,其基本原理是使样品中各组分在离子源中发生电离,生成不同荷质比的带电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。(二)基于质谱的蛋白组学的应用蛋白质是生理功能的执行者,蛋白质组学分析能够反映生命体在生理或病理情况下的变化。蛋白质组学的发展对体外诊断、筛选药物靶点、微生物、农业等各个方面有重要的意义。1、蛋白质组学在医学中的应用精准医疗是通过基因组、蛋白质组等前沿技术,精确

13、寻找疾病的原因和治疗的靶点,并对一种疾病的不同状态和过程进行精准诊断,最终实现对于特定疾病和特定患者进行个性化精准治疗的目的,提高疾病诊治与预防的效益。蛋白质组学在疾病生物标志物的筛查、疾病的诊断、靶点的识别、药物的选择等方面能够发挥重要的作用。2、蛋白质组学在微生物中的应用通过对同一致病菌不同菌株的蛋白质研究可以对菌株进行分类,蛋白质组的研究结果可以对基因组的研究结果起补充和修正作用。在整体水平上比较病原菌和非致病菌的蛋白质组分析,以及在各种环境下致病菌蛋白质组的变化,可以研究致病菌株的毒力因子。蛋白质组与免疫杂交的方法结合研究宿主对病原菌的体液免疫和细胞免疫应答。通过细菌蛋白质组与宿主多克

14、隆血清的杂交反应,发现新的抗原决定因子,可以应用于疫苗开发和诊断分析。对抗性菌株和敏感菌株进行蛋白质组分析,找到差异蛋白可以对细菌的耐药机制进行研究,为新药研究提供线索。分析对抗菌药物有不同反应的细菌的蛋白质组来寻找新的抗菌药物,筛选新的靶点。3、蛋白质组学在农业上的应用蛋白质组学在作物生长发育、药用植物研究、遗传育种、逆境胁迫、病虫害防治、兽医疾病诊断和治疗等方向发挥作用。植物蛋白质组学的研究有助于了解非生物胁迫的伤害机制、植物对非生物环境的适应机制、生物之间的相互作用机制、植物激素的调节作用等。例如,利用农作物发育过程中各器官、组织的变化状态,可以进行农作物新物种的培育;经常处于恶劣环境的

15、作物可以在环境胁迫下产生相应的抗体蛋白,利用蛋白质组学发现这些特定环境下的抗体蛋白,可以提高作物的抗逆性;作物生长过程中会与一些微生物相互作用,作物自身会产生某些特殊的蛋白应对,蛋白质组学的研究可以发现这些蛋白,帮助获得对抗病能力更强的品种。七、 蛋白质组学概览(一)基因和基因组学现代生命科学研究的早期,研究人员多从组织水平、细胞水平研究生命现象和生物过程。这些研究多是基于观察而描述生物学现象和过程,对生命现象的本质涉及较少。直到上世纪五十年代DNA双螺旋结构被发现,这一里程碑式的研究成果标志着生命科学研究正式迈进分子生物学时代。分子生物学是研究核酸、蛋白质等生物大分子的形态、功能、结构特征及

16、其重要性、规律性的学科,是人类从分子水平揭开生命的奥秘,从被动适应自然界转向主动改造自然界的基础学科。作为分子生物学最重要的奠基性成果之一,中心法则揭示了以DNA序列为模板,历经转录、翻译最终实现蛋白质表达的全过程。在上述过程中,含有特定遗传信息的一段DNA序列是分子生物学研究的主要对象。在现代疾病研究领域,分子生物学最突出的成就是揭示某些疾病与特定基因的异常表达及基因突变密切相关,奠定了疾病的分子生物学基础。早期的分子生物学研究往往聚焦于单个基因或蛋白质分子。随着研究的深入,人们逐渐认识到生命体是一个复杂的网络系统,仅研究单个生物大分子无法了解生命过程和疾病的发生机理,而只有系统性研究生物大分子才能更深入理解生命现象。因此,组学的概念应运而生,即对生物体某一类大分子进行集体表征和定量研究,探究系统层面上生命的奥秘。1986年提出的基因组学主要研究基因组的结构、功能、进化、表达特征以及对生物体的影响。随着基因测序技术的发展

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 解决方案

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号