转基因大豆发展现状

上传人:ni****g 文档编号:495299332 上传时间:2024-01-12 格式:DOCX 页数:10 大小:29.44KB
返回 下载 相关 举报
转基因大豆发展现状_第1页
第1页 / 共10页
转基因大豆发展现状_第2页
第2页 / 共10页
转基因大豆发展现状_第3页
第3页 / 共10页
转基因大豆发展现状_第4页
第4页 / 共10页
转基因大豆发展现状_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《转基因大豆发展现状》由会员分享,可在线阅读,更多相关《转基因大豆发展现状(10页珍藏版)》请在金锄头文库上搜索。

1、转基因大豆发展现状摘要:大豆起源于中国,不仅是人类主要的油料作物和植物性蛋白来源,而且是 重要的工业原料,在我国粮食安全及国民经济中占有重要地位。人们对大豆的需 求量逐年增加,但与玉米、水稻等禾谷类作物相比,大豆绝对产量很低,如按能 量转换计算,大豆产量只有玉米的1/3,加上大田除草等工作量大,导致大豆比 较效益低,制约大豆生产。育种工作者利用杂交、诱变等手段已培育大量优良新 品种,但进步相对较慢,不能满足人类对大豆产量和品质的需求。但大豆生产受 病、虫害和干旱等不利因素的影响,产量很不稳定,虽然常规育种技术在抗性品种 中发挥了重要作用,但是由于受物种间杂交不亲和性及与不良性状连锁等因素影 响

2、而难以利用,使常规育种受到了限制,因此,现代生物工程技术可以打破生物 之间的界限来实现遗传物质的重新组合,因而可按照人类预先设计来改造生物, 成为解决农业问题的一条重要出路。大豆比其它作物在遗传操作技术的某些方面 难度较大,但随着现代生物技术的飞速发展,大豆的生物技术研究取得了较大的 突破。80年代以来,已分别建起细胞、组织和原生质体水平的植株再生体系。关键词:转基因大豆 外源基因 遗传转化方法1转基因大豆类别1. 1抗虫转基因大豆农作物害虫给农业生产带来严重的危害。在世界范围内,虫害造成的损失约 占农作物总收获量的13%,每年大约损失数千亿美元大豆生育期间受害虫侵害严 重,常给大豆生产造成巨

3、大损失。大量喷施化学杀虫剂,不仅会增强害虫的抗药性, 使益虫及其它生态区系遭受破坏,而且严重污染环境,提高生产成本,破坏生态平 衡。常规的育种时限较长,但利用生物工程技术可缩短时限,并且局限性小。抗 虫转基因研究涉及到来自苏云金杆菌的Bt基因和豇豆胰蛋白酶基因。1.1.1含苏云金杆菌的Bt基因的转基因大豆Bt基因是苏云杆菌(Bacillus thuringiensis)杀虫结晶蛋白(insecticidal crystal protein,ICP)基因的简称,ICP通常以原毒素的形式存在,当昆虫取食 ICP后,在昆虫的消化道内,原毒素被活化,转型为毒性多肽分子。活化的ICP与 昆虫肠道上皮细胞

4、上面的特异性结合蛋白结合,结合以后,ICP全部或部分嵌合 于细胞膜中,使细胞产生一些孔道,从而导致细胞由于渗透平衡被破坏而破裂。伴 随着上述过程,昆虫将停止进食,最终导致死亡。我国的大豆外源抗虫基因研究起步晚,发展比较慢。1997年,徐香玲等以Ti 质粒为介导,将Pkt54B7C5质粒上的Btk-D内毒素蛋白基因导入东北大豆/黑农 370、/黑农390等品种。采用多种外植体和感染方法,从胚轴和子叶节诱导出丛 生芽和再生植株1。1999年,苏彦辉等利用苏云金芽孢杆菌(Bacillus thuringiensisBerliner)杀虫晶体蛋白(Bt)基因和葡糖苷酸酶(GUS)基因通过基 因枪轰击和

5、根癌土壤杆菌 (Agrobacterium tumefaciens(Smith et Townsend) Conn)介导转入大豆(Glycine max(L.) Merr.),诱导大豆转基因植株再生2。1.1.2豇豆胰蛋白酶抑制剂的转化豇豆胰蛋白酶抑制剂是天然的抗虫物质。与苏云金杆菌毒蛋白相比,具有抗 虫谱广,对人无副作用以及害虫不易产生耐受性等优点。豇豆胰蛋白酶抑制剂是 由设在尼日利亚的国际热带作物研究所(0TA)从几千份豇豆资源材料中筛选得到 的一份抗豆象蝉材料-TAu2027中得到的。它是由约80个氨基酸组成的多肽,其 产物可抑制昆虫消化道中的消化酶,使昆虫取食后不能演化吸收营养物质而饿

6、 死。1.2抗病转基因大豆1.2.1CP 基因CP基因是指病毒外壳蛋白(virus coat pro-tein)基因,外源的病毒外壳蛋 白基因导入植物细胞后,可使植物细胞获得保护作用,减少发病或延缓发病。大豆 在我国北方由于花叶病毒的危害,严重影响产量(可减产10 一 17%)与质量(褐斑 粒)。大豆的抗花叶病毒是属于马铃薯y组病毒的一个成员,两者具有同源性。1993年,徐香玲和刘伟华用的表达载体为PBCY 401,带有NPT五和PvY 一 CP 基因,用发恨农杆菌(Agrobacterium rhizogenes)R1000(pRiA4b)作为受 体3。1.2.2几丁质酶几丁质酶(chiti

7、nase)存在于植物和微生物中,为单基因编码,具有降解几丁 质的作用.由于许多危害植物的病原真菌的细胞壁主要成份之一是几丁质,而植 物中还未发现几丁质的底物,所以,几丁质酶在防御病原菌侵害中具有重要作用。 病原真菌细胞壁中几丁质的降解,不仅破坏细胞新物质的沉积,致使病原体死亡, 而且产生的细胞壁碎片具有诱导物作用,从而刺激寄主植物的抗病反应。徐香玲等以大豆下胚轴为外植体用农杆菌介导法和花粉管通道将几丁质酶 基因转入大豆,并得到了整合的分子证明41.3抗除草剂转基因大豆作物抗除草剂的基因工程是国际上植物基因工程研究领域中的活跃中心之 一。阿特拉津(Atrazine)是玉米生产中广泛使用的除草剂,

8、对玉米无害,效果良 好。1983年国外就有人提出将杂草中的抗阿特拉津基因转移到作物中的设想,国 外研究表明,对阿特拉津的抗性是由叶绿体抗阿特拉津的psbA基因调控的,该 基因编码叶绿体类囊体膜上的究KD蛋白,并参与光合系统I中的电子传递链过 程。5在转基因作物中,大豆一直独占鳌头,2007年转基因大豆面积为5 860万 hm2,占全球大豆总面积的61. 7%。占所有转基因作物面积的51%,而在此前的 若十年中一直占60%以上,即所谓的两个60%。在所有转基因作物中,抗除草剂 的占63%,为7 200万hm2,其中抗农达大豆占81%6。1988年,刘伯林等选用夏大豆(Glycine max)新品

9、系作受体植物。在开花 后一天内用自制微量注射器将抗性基因DNA溶液注人子房内.DNA从pSB135质粒中提取,该质拉含龙葵抗性基因的叶绿体DNA片段。在对叶片徐抹阿特拉津的鉴 定中,未注射抗性基因的后代对八阿特拉津水溶液敏感,叶片涂药液后很快出 现褐色斑点,然后变黄、枯萎,6一 10天后脱落。在注射抗性基因的第一代植株 中,出现了涂药后叶片生长正常的植株,其叶色及光合作用功能正常,表现出 对阿特拉津的抗性。在温室中对少数子二代植株进行了初步鉴定,表型和分子鉴 定结果表明抗性基因可以遗传7。1986年,傅骤哗等将抗Atrazine龙葵 (SOlanum nigrum )中的psbA基因用直接注射

10、法导人大豆,经叶片涂抹 Atrazine,荧光诱导动力学变化检测。接着傅骤哗等于1990年设计了田间喷施 Atrazine液的试验,以检测抗性植株能否经受住药液的侵袭,试验获得了一定结 果8。、20世纪90年代,美国掀起了一股推广应用耐除草剂大豆品种的热潮。耐除 草剂大豆品种,主要是指耐磺基脲类除草剂(STS)和耐草甘膦类除草剂。这两类 大豆品种,分别由美国杜邦公司和蒙三都公司于1994年和1995年通过生物技术 (转基因技术)和常规育种技术培育出来的。1999年,艾格福公司还将推出两个耐 Liberty的大豆品种。美国培育的耐草甘膦大豆品种已达600多个,可在多种生 产条件下种植。耐草甘膦品

11、种的配套除草剂超级草甘膦(Roundup Ultra)是孟三 都公司生产的安全有效与快速吸收传输产品,被誉为世界上最可信赖的除草剂9。草甘膦(G lyphosate)是孟山都公司研制的一种灭生性除草剂,商品名为 农达(Roundup),优点是杀草谱广,对人畜低毒,易被土壤吸收,残效期短, 对环境的污染小。但由于没有选择性,实际应用受到限制。1.4高品质转基因大豆大豆是一种重要的油料作物,与其他粮食作物相比,富含蛋白质。有的大豆 品种蛋白质含量高达50%。大豆种子蛋白主要有7s和11s蛋白组成。1991年,安永强等将大豆种子7s贮藏蛋白a亚基基因通过改装Ti质 粒的农杆菌(Agrobacteri

12、um tumefaciens)感染转化烟草叶片,并使转化组织 再生成完整植株。通过Southern杂交证明,a亚基基因已插入烟草基因组中。 ELISA分析证明,转基因植株种子中a亚基蛋白的含量显著高于非转化植株10。1996年,黑龙江省农科院雷勃均研究员和卢翠华副研究员在其所主持的“导入外源总DNA获得优质高蛋白和双高大豆新品系”课题研究中,筛选出的 大豆优质高蛋白品系,命名为D89 9822的“转基咽大豆”新品系11。2000 年,张燕君等将带有牛酪蛋白基因casein B的植物表达载体pAS- 2,在大豆自 花授粉后,用注射法导入大豆受精子房中12。2. 大豆转化方法2.1农杆菌介导法农杆

13、菌在侵染受伤植物时,可将其质粒上的一段DNA(T-DNA)整合到植物基 因组上,并在植物体内表达。因而,农杆菌被作为一种天然载体系统被广泛应用到 植物基因转化中。农杆菌介导的转基因方法具有以下优点:不需要专门仪器;宿主 范围广,包括大多数双子叶植物和少数单子叶植物;插入外源基因的片段较大,可 达50kb以上;转化率明显高于其它直接转化方法;外源基因整合到植物基因组上 的拷贝数较少,多为单拷贝;整合的外源基因变异小,后代的分离规律也遵循孟德 尔遗传规律13。农杆菌对双子叶植物侵染虽然较敏感,但对同属双子叶大豆来 说侵染效果一直不理想,虽然近期大豆的组培再生系统有了很大突破,但转化效 率仍然很低,

14、这主要有两方面原因:一是基因型依赖性强,二是农杆菌与受感染大 豆外植体之间相互作用产生的过敏反应导致感染部位褐化或坏死,从而影响转化 效率14。Facciotti等于1985年克隆了 SSU(1,5-二磷酸核酮糖融化酶)、OSU (章鱼 碱合成酶)和nptO(新霉素磷酸转移酶)的融合基因,最先用农杆菌对大豆进行侵 染转化,所用的外植体是栽培大豆For-rest的子叶、子叶节和节间,得到的抗性 愈伤组织经检测后证明有融合基因的诱导表达。1988年Hinchee等首次获得大 豆转基因植株所用的就是农杆菌介导法,他们筛选到的对农杆菌敏感的品种 Peking,用农杆菌介导法将nptO,gus(B-葡萄

15、糖苷酸酶)和Glyphosate耐性基因 转化大豆子叶,得到含有nptO和gus基因的共转化植株和含有nptO和Glyphosate耐性基因共转化植株15。2.2基因枪法基因枪法(particle gun)是是由康泰尔大学Kleim等(1987)发明的外源基因 直接导入植物细胞的方法。该方法是将带有目的基因的载体裹在金属(钨)微粒上, 再用金属微弹加速轰击受体组织,金属微弹到离受体细胞一定距离的金属网屏受 阻,而把微粒连同基因载体打入受体组织细胞内,再通过组织培养产生再生植株。 该方法的受体不受植物种类、器官等限制,特别用于农杆菌不能感染的单子叶植 物,但可靠性较差,转化频率较低。2.3其他方

16、法2.3.1花粉管通道法周光宇(1978,1988)在广泛调查内外远缘杂交工作的基础上,提出DNA片段 杂交假设,并设计了外源DNA直接导入受体的花粉管途径导入方法。即利用作物 受粉后形成的花粉管通道使外源DNA导入植物卵细胞、合子或早期胚细胞的技术。雷 勃钧等(1991,1994)先后用该技术将种内、种间,属间外源总DNA成功导入受体大 豆植株,并获得一些有价值的遗传变异。该方法简便易行,可以避免农杆菌转化频 率低和转化脱菌困难等问题,特别适于植物外植株再生困难或再生频率低的植物 16。2.3.2PEG介导基因转化机理PEG介导基因转化是Davey等(1980)和Krens等(1985)首先建立。PEG法的 主要原理是化合物聚乙二醇、多聚L-鸟氨酸(pLO)、磷酸钙及高PH值条件下诱 导原生质体摄取外源DNA分子。2.3.3电击法

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号