线性规划问题Matlab求解

上传人:桔**** 文档编号:494147605 上传时间:2023-07-16 格式:DOC 页数:6 大小:54.50KB
返回 下载 相关 举报
线性规划问题Matlab求解_第1页
第1页 / 共6页
线性规划问题Matlab求解_第2页
第2页 / 共6页
线性规划问题Matlab求解_第3页
第3页 / 共6页
线性规划问题Matlab求解_第4页
第4页 / 共6页
线性规划问题Matlab求解_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《线性规划问题Matlab求解》由会员分享,可在线阅读,更多相关《线性规划问题Matlab求解(6页珍藏版)》请在金锄头文库上搜索。

1、用MATLAB优化工具箱解线性规划 命令:x=linprog(c,A,b) 命令:x=linprog(c,A,b,Aeq,beq)注意:若没有不等式: 存在,则令A= ,b= . 若没有等式约束, 则令Aeq= , beq= .命令:1 x=linprog(c,A,b,Aeq,beq, VLB,VUB) 2 x=linprog(c,A,b,Aeq,beq, VLB,VUB, X0) 注意:1 若没有等式约束, 则令Aeq= , beq= . 2其中X0表示初始点 4、命令:x,fval=linprog()返回最优解x及x处的目标函数值fval.例1 解 编写M文件小xxgh1.m如下:c=-0

2、.4 -0.28 -0.32 -0.72 -0.64 -0.6; A=0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08; b=850;700;100;900; Aeq=; beq=; vlb=0;0;0;0;0;0; vub=;x,fval=linprog(c,A,b,Aeq,beq,vlb,vub)例2 解: 编写M文件xxgh2.m如下: c=6 3 4; A=0 1 0; b=50; Aeq=1 1 1; beq=120; vlb=30,0,20; vub=; x,fva

3、l=linprog(c,A,b,Aeq,beq,vlb,vub例3 (任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低解 设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上加工工件1、2、3的数量分别为x4、x5、x6。可建立以下线性规划模型:编写M文件xxgh3.m如下:f = 13 9 10 11 12 8;A = 0.4 1.1 1

4、 0 0 0 0 0 0 0.5 1.2 1.3;b = 800; 900;Aeq=1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1;beq=400 600 500;vlb = zeros(6,1);vub=;x,fval = linprog(f,A,b,Aeq,beq,vlb,vub)例4某厂每日8小时的产量不低于1800件。为了进行质量控制,计划聘请两种不同水平的检验员。一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15小时/件,正确率95%,计时工资3元/小时。检验员每错检一次,工厂要损失2元。为使总检验费用最省,该

5、工厂应聘一级、二级检验员各几名?解 设需要一级和二级检验员的人数分别为x1、x2人,编写M文件xxgh4.m如下:c = 40;36;A=-5 -3;b=-45;Aeq=;beq=;vlb = zeros(2,1);vub=9;15; %调用linprog函数:x,fval = linprog(c,A,b,Aeq,beq,vlb,vub)结果为:x = 9.0000 0.0000fval =360即只需聘用9个一级检验员。4控制参数options的设置Options中常用的几个参数的名称、含义、取值如下:(1) Display: 显示水平.取值为off时,不显示输出; 取值为iter时,显示每

6、次迭代的信息;取值为final时,显示最终结果.默认值为final.(2) MaxFunEvals: 允许进行函数评价的最大次数,取值为正整数.(3) MaxIter: 允许进行迭代的最大次数,取值为正整数控制参数options可以通过函数optimset创建或修改。命令的格式如下:(1) options=optimset(optimfun) 创建一个含有所有参数名,并与优化函数optimfun相关的默认值的选项结构options.(2)options=optimset(param1,value1,param2,value2,.) 创建一个名称为options的优化选项参数,其中指定的参数具有

7、指定值,所有未指定的参数取默认值.(3)options=optimset(oldops,param1,value1,param2, value2,.) 创建名称为oldops的参数的拷贝,用指定的参数值修改oldops中相应的参数.例:opts=optimset(Display,iter,TolFun,1e-8) 该语句创建一个称为opts的优化选项结构,其中显示参数设为iter, TolFun参数设为1e-8.用Matlab解无约束优化问题 一元函数无约束优化问题 常用格式如下:(1)x= fminbnd (fun,x1,x2)(2)x= fminbnd (fun,x1,x2 ,option

8、s)(3)x,fval= fminbnd(.)(4)x,fval,exitflag= fminbnd(.)(5)x,fval,exitflag,output= fminbnd(.)其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。 函数fminbnd的算法基于黄金分割法和二次插值法,它要求目标函数必须是连续函数,并可能只给出局部最优解。例1 求 在0x8中的最小值与最大值主程序为wliti1.m: f=2*exp(-x).*sin(x); fplot(f,0,8); %作图语句 xmin,ymin=fminbnd (f, 0,8) f1=-2*exp(-x).*sin(x);

9、 xmax,ymax=fminbnd (f1, 0,8)运行结果: xmin = 3.9270 ymin = -0.0279 xmax = 0.7854 ymax = 0.6448例2 对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大? 先编写M文件fun0.m如下: function f=fun0(x) f=-(3-2*x).2*x;主程序为wliti2.m: x,fval=fminbnd(fun0,0,1.5); xmax=x fmax=-fval运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为0.5

10、米时水槽的容积最大,最大容积为2立方米.2、多元函数无约束优化问题标准型为:min F(X)命令格式为:(1)x= fminunc(fun,X0 );或x=fminsearch(fun,X0 )(2)x= fminunc(fun,X0 ,options); 或x=fminsearch(fun,X0 ,options)(3)x,fval= fminunc(.); 或x,fval= fminsearch(.)(4)x,fval,exitflag= fminunc(.); 或x,fval,exitflag= fminsearch(5)x,fval,exitflag,output= fminunc(.

11、); 或x,fval,exitflag,output= fminsearch(.)说明: fminsearch是用单纯形法寻优. fminunc的算法见以下几点说明:1 fminunc为无约束优化提供了大型优化和中型优化算法。由options中的参数LargeScale控制:LargeScale=on(默认值),使用大型算法LargeScale=off(默认值),使用中型算法2 fminunc为中型优化算法的搜索方向提供了4种算法,由 options中的参数HessUpdate控制:HessUpdate=bfgs(默认值),拟牛顿法的BFGS公式;HessUpdate=dfp,拟牛顿法的DFP

12、公式;HessUpdate=steepdesc,最速下降法3 fminunc为中型优化算法的步长一维搜索提供了两种算法, 由options中参数LineSearchType控制:LineSearchType=quadcubic(缺省值),混合的二次和三 次多项式插值;LineSearchType=cubicpoly,三次多项式插 使用fminunc和 fminsearch可能会得到局部最优解.例3 min f(x)=(4x12+2x22+4x1x2+2x2+1)*exp(x1)1、编写M-文件 fun1.m: function f = fun1 (x) f = exp(x(1)*(4*x(1)

13、2+2*x(2)2+4*x(1)*x(2)+2*x(2)+1); 2、输入M文件wliti3.m如下: x0 = -1, 1; x=fminunc(fun1,x0); y=fun1(x)3、运行结果: x= 0.5000 -1.0000 y = 1.3029e-10例4 Rosenbrock 函数 f(x1,x2)=100(x2-x12)2+(1-x1)2 的最优解(极小)为x*=(1,1),极小值为f*=0.试用 不同算法(搜索方向和步长搜索)求数值最优解. 初值选为x0=(-1.2 , 2).1. 为获得直观认识,先画出Rosenbrock 函数的三维图形, 输入以下命令: x,y=meshgrid(-2:0.1:2,-1:0.1:3); z=100*(y-x.2).2+(1-x).2; mesh(x,y,z)2. 画出Rosenbrock 函数的等高线图,输入命令: contour(x,y,z,20) hold on plot(-1.2,2, o ); text(-1.2,2,start point) plot(1,1,o)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 幼儿/小学教育 > 小学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号